¥ Architecture & Deployment

2025-2026 v0.1.0 on branch main Rev: d1f684699a511826485586b2ea383cf021631add

comimand Line

Learn what a command line interface is and learn the basics of navigating and

manipulating your filesystem in a Unix shell.

Table of contents

e Presentation

e Back to the command line

e What is a Command Line Interface (CLI)?
e  Whyuseit?

e QOpenacCLl

e Install WSL (Windows users only)

e How to use the CLI

e Work in progress...

e  Writing_ commands

e QOptions vs. values

e Options with values

¢ Naming_things when using CLI

e Auto-completion

e Getting_ help

e Interactive help pages

e Unix Command Syntax

e Using_the filesystem

e The pwd command

e The ls command

e The cd command

e Absolute paths

e The.path

[ ]
_|

he .. path

e Path reference


https://archidep.ch/
https://github.com/ArchiDep/website/tree/main
https://github.com/ArchiDep/website/blob/d1f684699a511826485586b2ea383cf021631add/course/collections/_course/101-command-line/subject.md

*  Your projects directory

The mkdir command

The touch command

The echo command

The cat command

e Stopping_running_commands

e Windows users
Vim

e WHY?!

e How Vim works

e Normal mode

e Command mode

Nano

e An alternative to Vim

e Editing files with nano

e Saving files

e Confirming_the filename

e Setting_nano as the default editor

The PATH variable

e Understanding_the PATH

e Finding_commands

e Using non-system commands

e Custom command example

e Executing a command in a directory that’s not in the PATH

e Updating the PATH variable

e Does it work?

e What have | done?

Unleash your terminal

¢ Oh My Zsh

e Other tools for the command line lover




Back to the command line

Command line interfaces are still in wide use today.

What is a Command Line Interface (CLI)?

A CLI is a tool that allows you to use your computer by writing what you want to do (i.e.

commands), instead of clicking on things.

It's been installed on computers for a long time, but it has evolved “a little” since then. It

usually looks something like this:

MINGW84:/c/MEl/comem-webdev - O X

1 & /Cc/METI
$ cd comem-webdev

: /c/MEI/comem-
$ 1s

1d/ gulpfile.js  NotesSlideswebDev.md publi s/~ TODO.md
onfig.js / package.json READM ces /

| /c/MEI/comem-webdev (master)
5

Why use it?
A CLI is not very user-friendly or visually appealing but it has several advantages:

It requires very few resources (e.g. memory), which is convenient where resources are
scarce (e.g. embedded systems, web servers).

It can be easily automated through scripting.

Is is ultimately more powerful and efficient than any GUI for many computing tasks.



https://en.wikipedia.org/wiki/Command-line_interface
https://github.com/readme/featured/future-of-the-command-line

For these reasons, a lot of tools, especially development tools, don’t have any GUI and are
only usable through a CLI. Or they have a limited GUI that does not have as many options
as the CLI.

Thus, using a CLI is a requirement for any developer today.

OpenaCLl

CLIs are available on every operating system.
On Unix-like systems (like macOS or Linux), it's an application called the Terminal.

You can use it right away, as it’s the de-facto standard.

On Windows, the default CLI is called emd (or Invite de commandes in French) However, it

does not use the same syntax as Unix-like CLIs (plus, it’s bad).
You also have PowerShell which is better, but is not a Unix-like CLI either.

You’ll need to install an alternative.

Wl More information

Software terminals are an emulation of old physical terminals like TTYs or the
VT100. You will still find references to the term “TTY” in the documentation of some

modern command line tools.

Install WSL (Windows users only)

Youre going to install the Windows Subsystem for Linux (WSL), a tool that allows you to

run a Linux environment on your Windows machine, without using a virtual machine or

setting up a dual boot.


https://en.wikipedia.org/wiki/PowerShell
https://en.wikipedia.org/wiki/Teleprinter
https://en.wikipedia.org/wiki/VT100
https://learn.microsoft.com/en-us/windows/wsl/about

&) patrick @PATRICKWUSASC: ~

2 - 7:53 PM
88 O Type here to search O B @ » M © ARy

Follow the installation instructions for the WSL. The default Linux distribution installed

will be Ubuntu, which is perfect for the purposes of this course.

It will ask you for a username and a password. We suggest you use the same username as
for the rest of the course, and that you use the same password as your Windows user

account’s.

How to use the CLI

When you open the CLI you will find a blank screen that looks like this:
$>

These symbols represent the prompt and are used to indicate that you have the lead. The

computer is waiting for you to type something for it to execute.

(O Note

The prompt is not always ' $> .


https://learn.microsoft.com/en-us/windows/wsl/install

For example, on earlier macOS versions, it used to be ' bash3.2$ ,indicating the

name of the shell (Bash) and its version.

On more recent macOS versions using the Z shell (Zsh), the prompt might indicate

your computer’s name, your username and the current directory, e.g.  MyComputer:~

root# .
ece 1. bash
bash-3.2% I MyComputer:~ root# |

For consistency, we will always use $> to represent the prompt.

Work in progress...

When the computer is working, the prompt disappear and you no longer have control.

bash-3.2% sleep 10

A 4

When the computer is done working, it will indicate that you are back in control by

showing the prompt again.


https://en.wikipedia.org/wiki/Bash_(Unix_shell)
https://en.wikipedia.org/wiki/Z_shell

bash-3.2% sleep 10
bash-3.2% |}

h A

() Note

The ( sleep command tells the computer to do nothing for the specified number of

seconds.

Writing commands

A command is a word that you have to type in the CLI that will tell the computer what to
do.

The syntax for using commands looks like this:

$> name argl arg2 arg3 ...

Note the use of spaces to separate the differents arguments of a command.

© name represents the command you want to execute.

e argl arg2 arg3 ... representthe arguments of the command, each of them

separated by a space.



Options vs. values

There are two types of arguments to use with a command (if needed):

Options usually specify how the command will behave. By convention, they are preceded

by - or —
$> 1s —-a -1

We use the | 1s ' command to list the content of the current directory. The options tell

1s how it should do so:

e | —a tellsitto print all elements (including hidden ones).

e -1 tellsitto print elements in a list format, rather than on one line.

Values not preceded by anything usually specify what will be used by the command:
$> cd /Users/Batman

Here, we use the  c¢d command to move to another directory (or change directory).

And the argument  /Users/Batman tells the command what directory we want to move

to.

Options with values

Values can also be linked to an option:

$> tar -c -v —-f compressed.tar.gz file-to-compress

three options:


https://en.wikipedia.org/wiki/Tar_(computing)

e | —c tellsitto compress (instead of uncompressing).
e | —v tellsitto be verbose (print more information to the CLI).

e —f tellsit where to store the compressed file; this is followed immediately by

compressed.tar.gz which is the value of that option.
It then takes one value:
e file-to-compress is the file (or directory) to compress

There are two values in this example: one linked to the ' —f ' option, and one used by the

overall command.

Naming things when using CLI

You should avoid the following characters in directories and file names you want to

manipulate with the CLI:

* spaces (they're used to separate arguments in command).

* accents (e.g. é , a, ¢ ,etc).

They can cause errors in some scripts or tools, and will inevitably complicate using the

CLI. If you have a Why So Serious directory, this WILL NOT work:
$> 1ls Why So Serious

This command will be interpreted as a call to the 1s command with three arguments:

Why , So and Serious .

You can use arguments containing spaces, but you have to escape them first, either with

quotation marks or backslashes:

$> 1s "Why So Serious"



$> 1s Why\ So\ Serious

Auto-completion

It’s not fun to type directory names, especially when they have spaces you must escape in
them, so the CLI has auto-completion. Type the first few characters of the file or directory

you need, then hit the ' Tab  key:

[ NON ] 1. bash [ NON ] 1. bash

bash-3.2$ 1s Docl] b bash-3.2$ 1s Documents/|]

If there are multiple files or directories that begin with the same characters, pressing
Tab will not display anything. You need hit Tab a second time to display the list of

available choices:

0 ® 1. bash
bash-3.2% 1s Do

Documents/ Downloads/
bash-3.2% 1s Dol

You can type just enough characters so that the CLI can determine which one you want

(in this case ¢ or ' w ),then hit ' Tab again to get the full path.

Getting help

You can get help on most advanced commands by executing them with the ' —help
option. As the option’s name implies, it's designed to give you some help on how to use

the command:



eC e 1. bash

bash-3.2% tar --help
tar(bsdtar): manipulate archive files
First option must be a mode specifier:
-c Create -r Add/Replace -t List -u Update -x Extract

Common Options:
-b # Use # 512-byte records per I/0 block
-f <filename> Location of archive
-V Verbose

Some commands don’t have the ' —help ' option, but there are alternative sources of
information depending on what operating system you'e on:
e On Linux or macOS,use man 1s to display the manual for the 1s command.

e On Windows,use  help cd to display help for the ' cd  command; you can also

type ' help to list available commands (only system commands).

e If you have Node.js and npm installed, there is also tldr pages: a cross-platform tool

that provides simplified and community-driven manual pages.

Interactive help pages

Some help pages or commands will take over the screen to display their content, hiding

the prompt and previous interactions.

Usually, it means that there is content that takes more than one screen to be shown. You

can “scroll” up and down line-by-line using the arrow keys or the ' Enter  key.

To quit these interactive documentations, use the ' q = (quit) key.


https://nodejs.org/
https://tldr.sh/

| JON 1. sh

LS(1) BSD General Commands Manual LS(1)
NAME

1ls -- list directory contents
SYNOPSIS

1s [-ABCFGHLOPRSTUW@abcdefghiklmnopgrstuwxl] [file ...]

DESCRIPTION
For each operand that names a file of a type other than directory, l1s

displays its name as well as any requested, associated information. For

Unix Command Syntax

When reading a command’s manual or documentation, you may find some strange syntax

that make little sense to you, like:

cd [-L|[-P [-e]l]l [-@]] [dir]
s [-ABCFGHLOPRSTUW@abcdefghiklmnopqrstuwxl] [file ...]

Here are some explanations:

e [l :Whatevers inside is optional (ex: [-e] ).
. | :You have to choose between options (ex: -L|-P ).

e ... :Whatever’s before can be repeated (ex: [file ...] ).
Depending on the documentation, you will also see symbols like this:

o <value>

e ——option=VALUE

DON'TWRITE <value> or VALUE .Replace it by an appropriate value for that option

or argument.



Using the filesystem

The pwd command

When you open a CLI, it places you in your home directory. From there you can navigate

your filesystem to go to other directories (more on that later).

But first, you might want to check where you currently are. Use the ' pwd ' command:

$> pwd

/Users/Batman

() Note

pwd means “print working directory”: it gives you the absolute path to the directory

you're currently in.

The 1s command

Now that you know where you are, you might want to know what your current directory is

containing.

Use the 1s command:

$> 1s
(lots and lots of files)

(O Note

1s means “list”: it lists the contents of a directory.

By default, 1s doesn’t list hidden elements. By convention in Unix-like systems, files

that start with © . ' (a dot) are hidden.



If you want it to do that, you need to pass the ' —a (all) option:

$> 1s -a

(lots and lots of files, including the hidden ones)

The cd command

It’s time to go out a little and move to another directory.

Suppose you have a ' Documents  directory in your home directory, that contains another
directory TopSecret where you want to go. Use the ' cd ' (change directory) command,

passing it as argument the path to the directory you want to go to:

$> pwd

/Users/Batman
$> cd Documents/TopSecret

$> pwd

/Users/Batman/Documents/TopSecret

This is a relative path: it is relative to the current working directory.

Absolute paths
You can also go to a specific directory anywhere on your filesystem like this:
$> cd /Users/Batman/Documents

$> pwd

/Users/Batman/Documents



This is an absolute path because it starts with a  / character. It starts at the root of your

filesystem so it does not matter where you are now.

©V Tip
You also have auto-completion with the cd command. Hit the Tab key after

entering some letters.

The . path

The (. path represents the current directory. The following commands are strictly

equivalent:

$> cd Documents/TopSecret

$> cd ./Documents/TopSecret

You can also not go anywhere:

$> pwd

/Users/Batman
$> cd .

$> pwd

/Users/Batman

Or compress the current directory:

tar -c¢ -v -f /somewhere/compressed.tar.gz .

This does not seem very useful now, but it will be in further tutorials.



The .. path

To go up into the parent directory, use the .. path (don’t forget the space between
cd and .. ):

$> pwd

/Users/Batman/Documents
$> cd ..

$> pwd

/Users/Batman

You can also drag and drop a directory from your Explorer or your Finder to the CLI to see

its absolute path automaticaly written:

$> cd
(Drag and drop a directory from your Explorer/Finder, and...)

$> cd /Users/Batman/Pictures/

At any time and from anywhere, you can return to your home directory with the cd

command, without any argument or with a ' ~  (tilde):

$> cd
$> pwd

/Users/Batman

$> cd ~
$> pwd

/Users/Batman

©V Tip



To type the | ~  character, use this combination:

o A1tGr-=~ on Windows

o Alt-N on Mac

Path reference
Path Where
The current directory.
The parent directory.
foo/bar The file/directory ' bar  inside the directory ' foo ' in the current directory. This is a

relative path.
./foo/bar Same as the above

/foo/bar The file/directory ' bar inside the directory ' foo ' at the root of your filesystem.
This is an absolute path.

~ Your home directory. This is an absolute path.

~/foo/bar The file/directory ' bar  inside the directory ' foo in your home directory. This is
an absolute path.

Your projects directory

Throughout this course, you will often see the following command (or something

resembling it):

$> cd /path/to/projects

This means that you use the path to the directory in which you store your projects. For

example, on John Doe’s macOS system, it could be ' /Users/jde/Projects .



Warning

Do not actually write ' /path/to/projects . It will obviously fail, unless you
happen to have a ' path directory that contains a' to  directory that contains a

projects directory...

e N
(®  Windows users: if your username contains spaces or accents, you should NOT
store your projects under your home directory. You should find a path elsewhere

on your filesystem. This will save you a lot of needless pain and suffering.

The mkdir command

You can create directories with the CLI.

Use the  mkdir (make directory) command to create a new directory in the current

directory:

$> mkdir BatmobileSchematics
$> 1s

BatmobileSchematics

You can also create a directory elsewhere:

$> mkdir ~/Documents/TopSecret/BatmobileSchematics

This will only work if all directories down to ' TopSecret ' already exist. To automatically

create all intermediate directories, add the ' —p ' (parents) option:

$> mkdir -p ~/Documents/TopSecret/BatmobileSchematics




The touch command

The ' touch command updates the last modification date of a file. It also has the useful

property of creating the file if it doesn’t exist.

Hence, it’s a quick way to create an empty file in the CLI:

$> touch foo.txt

$> 1s
foo.txt

The echo command

The ' echo command simply echoes its arguments back to you:

$> echo Hello World
Hello World

This seems useless, but can be quite powerful when combined with Unix features like

redirection. For example, you can redirect the output to a file.

The > operator means “write the output of the previous command into a file”. This allows

you to quickly create a simple text file:

$> echo foo > bar.txt

$> 1s
bar.txt

If the file already exists, it is overwritten. You can also use the ' >> operator, which

means ‘append the output of the previous command to the end of a file™:


https://en.wikipedia.org/wiki/Redirection_(computing)

$> echo bar >> bar.txt

The cat command

The | cat command can display one file or concatenate multiple files in the CLI. For

example, this displays the contents of the previous example’s file:

$> cat bar.txt
foo

bar

This creates a new  hello.txt file and displays the result of concatenating the two

files:

$> echo World > hello.txt
$> cat bar.txt hello.txt
foo

bar
World

Stopping running commands

Sometimes a command will take too long to execute.

As an example, run this command which will wait one hour before exiting:
$> sleep 3600

As you can see, the command keeps executing and you no longer have a prompt. Anything

you type is ignored, as it is no longer interpreted by the shell, but by the ' sleep



command instead (which doesn’t do anything with it).

By convention in Unix shells, you can always terminate a running command by typing

Ctr1-C (press the C key while holding the Control key).

Warning

Note that Ctr1-C forces termination of a running command. It might not have

finished what it was doing.

Windows users

This is how you reference or use your drives ( C: , D: ,etc) in the Windows Subsystem

for Linux (WSL):

$> cd /mnt/c/foo/bar
$> cd /mnt/d/foo

(O Note

If you are using Git Bash, it's ' /c instead of ' /mnt/c .

Copy/Paste

Since ' Ctr1-C is used to stop the current process, it can’t be used as a shortcut to copy
things from the CLI. Instead, the Windows Subsystem for Linux (WSL) has two custom
shortcuts:

e Shift-Ctrl-C to copy things from the CLI

e  Shift-Ctr1-P to paste things to the CLI



Vim

Vim is an infamous CLI editor originally developed in 1976 (WHAT?!) for the Unix

operating system.

() Note

The name comes from “vi improved”, because Vim is an improved clone of an earlier

editor: vi (from visual).

WHY?!
Why would you need to learn it?

Sometimes it’s just the only editor you have (e.g. on a server). Also some developer tools

might open Vim for user input.
If this happens (and it will), there’s one imperative rule to follow:
DO NOT PANIC!

Open a file by running the - vim command with the path to the file you want to

create/edit:

vim test.txt

How Vim works

Vim can be unsettling at first, until you know how it works.
Let go of your fear. And your mouse, it's mostly useless in Vim. You control Vim by typing.

The first thing to understand whith Vim is that it has 3 modes:


https://en.wikipedia.org/wiki/Vim_(text_editor)
https://en.wikipedia.org/wiki/Vi_(text_editor)

* Normal mode (the one you're in when Vim starts).
e Command mode (the one to use to save and/or quit).

* Insert mode (the one to use to insert text).

To go into each mode use this keys:

From Type To go to
Normal : Command
Normal i Insert
Command/Insert Esc Normal
Normal mode

The Normal mode of Vim is the one you're in when it starts. In this mode, you can move

the cursor around with the arrow keys.

You can also use some commands to interact with the text:

Command Effect
X Delete the character under the cursor
dw Delete a word, with the cursor standing before the first letter
dd Delete the complete line the cursor is on
u Undo the last command

Enter Command mode (to save and/or quit)

i Enter Insert mode (to type text)

©V Tip



At anytime, you can hit the ' Esc ' key to go back to the Normal mode.

Command mode

The Command mode, which you can only access from the Normal mode, is the one you’ll

mostly use to save and/or quit.

To enter the Command mode, hit the ' :  key. From there, you can use some commands:
Command Effect

q Quit Vim (will fail if you have unsaved modifications)

w Write (save) the file and all its modifications

q! Force (1) Vim to quit (any unsaved modification will be lost)

wq or x Write and quit, i.e. save the file then quit Vim.

Nano

.dBBE8DL.

pags,

08

(13

ano: a simpler CLI editor to keep your sanity.”



An alternative to Vim

If Vim is a bit too much for you, nano is another CLI editor that is much simpler to use

and is also usually installed on most Unix-like systems (and in Git Bash).

You can open a file with nano in much the same way as Vim, using the  nano  command

instead:

$> nano test.txt

Editing files with nano

Editing files is much more straightforward and intuitive with nano. Once the file is open,

you can simply type your text and move around with arrow keys:

e s |
GNU nano 2.0.6 File: test.txt Modified

Hello, I quit vim. This file was edited with nano.|j

K¢ Get Help @ WriteOut N Read File @4 Prev Page @M Cut Text Q¢ Cur Pos
R Exit 88 Justify Where Is @Y Next Page gl UnCut Textgl] To Spell

©V Tip

Nano also helpfully prints its main keyboard shortcuts at the bottom of the window.

The most important one is = ~X  for Exit. In keyboard shortcut parlance, the

symbol always represents the control key.
So, to exit from nano, type Ctrl-X .

Saving files

When you exit nano with - Ctr1-X , it will ask you whether you want to save your

changes:


https://en.wikipedia.org/wiki/GNU_nano

(000 e
GNU nano 2.0.6 File: test.txt Modified

Hello, I quit vim. This file was edited with nano.

Save modified buffer (ANSWERING "No" WILL DESTROY CHANGES) ?

N No Cancel

Press the 'y key to save or the ' n  key to discard your changes.

Confirming the filename

When saving changes, nano will always ask you to confirm the filename where the

changes should be saved:

GNU nano 2.0.6 File: test.txt Modified

Hello, I quit vim. This file was edited with nano.

test. txt
Bl To Files
B DOS Format

File Name to Write:
K¢ Get Help
a8 Cancel

VY Prepend
B3 Backup File

Mac Format

As you can see, it tells you the name of the file you opened. Now you can:

e Simply press | Enter to save the file.

e Or,change the name to save your changes to another file (and keep the unmodified

original).

Setting nano as the default editor

Editing the shell configuration will depend on your shell: for Zsh (the default terminal
shell on macOS) or Bash shell (the default in Git Bash and most Linux systems), you have
to set the ' $EDITOR  environment variable. You can do that by adding the following line

to your ~/.zshrc or ~/.bash_profile file depending on which shell you are using:



export EDITOR=nano

Remember that you must relaunch your terminal for this change to take effect.

If you are unsure of what shell you are using, type in the following command. The output

will display the name of your current shell.

$> echo $0
bash

@ Tip
Now that you know how to use nano, you can edit your Bash profile file with the

following command: nano ~/.bash_profile .

(O Note

On Ubuntu, you can list available editors and choose the default one with the

following command:

$> sudo update-alternatives —--config editor

The PATH variable

When you type a command in the CLI, it will try to see if it knows this command by
looking in some directories to see if there is an executable file that matches the

command name.

$> rubbish

bash: rubbish: command not found



This means that the CLI failed to find the executable named ' rubbish in any of the

directories where it looked.

The list of the directories (and their paths) in which the CLI searches is stored in the

PATH environment variable, each of them being separated with a

You can print the content of your | PATH ' variable to see this list:

$> echo $PATH
/usr/local/bin:/bin:/usr/bin:/custom/dir

Understanding the PATH

Assuming your | PATH ' looks like this:

$> echo $PATH

/usr/local/bin:/bin:/usr/bin:/custom/dir
What happens when you run the following command?
$> 1s —-a -1

1. The shell will look in the ' /fusr/local/bin directory. There is no executable named

ls there, moving on...

2. The shell will look in the /bin directory. There is an executable named 1s there!

Execute it with arguments ' —a and -1 .

3. We're done here. No need to look at the rest of the | PATH . If there happens to be an

1s executable inthe /custom/dir directory, it will not be used.



Finding commands

You can check where a command is with the which command:

$> which 1s
/bin/1ls

If there are multiple versions of a command in your ' PATH ,you can add the ' —a option

to list them all:

$> which -a git
/opt/homebrew/bin/git
/usr/bin/git

(O Note

Remember, the shell will use the first one it finds, so in this example it would use
/opt/homebrew/bin/git if you type git ,completely ignoring
/usr/bin/git .

Using non-system commands

Many development tools you install come with executables that you can run from the CLI

(e.g. Git, Node.js, MongoDB).

Some of these tools will install their executable in a standard directory like
/usr/local/bin ,which is already in your PATH .0Once you've installed them, you can

simply run their new commands. Git and Node.js, for example, do this.

However, sometimes youre downloading only an executable and saving it in a directory

somewhere that is not in the PATH .



Custom command example

Run the following commands to download a simple Hello World shell script and make it

into an executable:

$> mkdir —-p ~/hello-program/bin
$> curl -0 ~/hello-program/bin/hello https://gist.githubusercontent.com/AlphaHydr
$> chmod 755 ~/hello-program/bin/hello

(O Note

The ' curl command is used to download the script file,and the ' chmod ' command

to make that file executable.

You should now be able to find it in the ~/hello-program/bin directory:

$> 1s ~/hello-program/bin
hello

It's now installed, we can find it using the CLI, but it still cannot be run. Why?

$> hello

command not found: hello

Executing a command in a directory that's not in the PATH

You can run a command from anywhere by writing the absolute path to the executable:

$> ~/hello-program/bin/hello
Hello World

You can also manually go to the directory containing the executable and run the

command there:



$> cd ~/hello-program/bin
$> ./hello
Hello World

©V Tip
When the first word on the CLI startswith' / , ~/ , ./ or ../ ,the shell

interprets it as a file path. Instead of looking for a command in the ' PATH , it simply

executes that file.

But, ideally, you want to be able to just type hello ,and have the script be executed.

For this, you need to add the directory containing the executable to your PATH variable.

Updating the paTH variable

To add a new path in your | PATH ' variable, you have to edit a special file, used by your

CLI interpreter (shell). This file depends upon the shell you are using:

CLI File to edit
Git Bash ~/.bash_profile
Terminal / Zsh ~/.zshrc

Open the adequate file ( .bash_profile for this example) from the CLI with  nano  or

your favorite editor if it can display hidden files:

$> nano ~/.bash_profile

Add this line at the bottom of your file (use ' i ' to enter insert mode if using Vim):

export PATH="$HOME/hello-program/bin:$PATH"


http://zsh.sourceforge.net/

If you're in Vim, press | Esc ' when you're done typing,then :wq and Enter to save

and quit. If youre in nano, press - Ctr1-X ,then answer  Yes ' and confirm the filename.

Does it work?

Warning

Remember to close and re-open your CLI to have the shell reload its configuration

file.

You should now be able to run the Hello World shell script as a command simply by

typing hello :

$> hello
Hello World

You don’t even have to be in the correct directory:
$> cd
$> pwd
/Users/jde

$> hello
Hello World

And your CLI knows where it is:

$> which hello
/Users/jde/hello-program/bin/hello

It knows this because the directory containing the script is now in your PATH:

$> echo $PATH
/Users/jde/hello-program/bin:/usr/bin:/bin:/usr/sbin:/sbin:/usr/local/bin



What have | done?

You have added a directory to the PATH :

export PATH="~/hello-program/bin:$PATH"

This line says:

* Modify the | PATH variable.
e Init, put the new directory ~/hello-program/bin and the previous value of the

PATH , separated by

The next time you run a command, your shell will first look in this directory for

executables, then in the rest of the PATH .

Common mistakes

e What you must put in the ' PATH is NOT the path to the executable, but the path to

the directory containing the executable.

* You must re-open your CLI for the change to take effect: the shell configuration file

(e.g. ~/.bash_profile ) is only applied when the shell starts.



Unleash your terminal

christianoette@coe-host: ~/src/christianoette.com

®

~ (zsh) 81 yarn (node) ® %2 ~ (zsh) ¥3 ..tianoette.com (zsh)

christianoette  coe-host .~ » src » christianoette.com ? master UL . 1s
README . md node_modules package.json src
buildspec.yml package-lock.json public yarn. lock
christianocette coe-host =~ » src » christianoette.com y master ML git status
On branch master
Your branch is up to date with 'origin/master’.

nothing to commit, working tree clean

christianoette coe-host ~~ » src > christianoette.com y master ML NS git stash pop
On branch master
Your branch is up to date with 'origin/master’.

Changes to be committed:
(use "git restore —-staged <file>..." to unstage)

Changes not staged for commit:
(use '"git add <file>..." to update what will be committed)
(use '"git restore <file>..." to discard changes in working directory)
modified: src/assets/blog/blog-meta. json

Dropped refs/stash@{@} (55d4a469bde747896e677c5025124cladccel5ad)
christianoette coe-host =~ » src » christianoette.com ? master 1v  1a

Oh My Zsh

31
%4

Command-line shells have been worked on for a very long time. Modern shells such as

the Z shell (Zsh) have a whole community that created many plugins to simplify your daily

command-Lline work.

On macOS or Linux, you may want to install Oh My Zsh to fully unleash the power of your

Terminal. It has plugins to integrate with Homebrew, Git, various programming languages

like Ruby, PHP, Go, and much more.

On Windows, you may want to install the Windows Subsystem for Linux so you can install

a Linux distribution like Ubuntu. You can then install Zsh and Oh My Zsh as well.

Other tools for the command line lover

at :a cat clone with wings


https://en.wikipedia.org/wiki/Z_shell
https://ohmyz.sh/
https://github.com/ohmyzsh/ohmyzsh/wiki/Plugins
https://learn.microsoft.com/en-us/windows/wsl/about
http://kevinprogramming.com/using-zsh-in-windows-terminal/
https://github.com/sharkdp/bat

e tldr :better man pages

[ ]
—h

zf to quickly find files

e ack tosearch for text in files ( grep #alternative)

e rsync for incremental file transfers ( cp & ( scp alternative)

A Terminal multiplexer like:

° tmux
® screen
o zellij @

T Backto top


https://github.com/tldr-pages/tldr
https://junegunn.github.io/fzf/
https://beyondgrep.com/
https://rsync.samba.org/
https://en.wikipedia.org/wiki/Multiplexer
https://github.com/tmux/tmux/wiki
https://www.gnu.org/software/screen/
https://zellij.dev/

