
Architecture & Deployment

2025-2026 v0.1.0 on branch main Rev: d1f684699a511826485586b2ea383cf021631add

Shell Scripting

Learn the basics of shell scripting with Bash.

You will need

A Unix CLI

What is a script?

How is a script executed?

What can I put in a script?

How do I create a script?

All kinds of scripts

What is shell scripting?

Shell script basics

Commands

Working directory

Variables

Store the output of commands

Environment variables

Conditionals

The test built-in command

Loops

Special variables

The set built-in command

Functions

Variable scope

References

Table of contents

https://archidep.ch/
https://github.com/ArchiDep/website/tree/main
https://github.com/ArchiDep/website/blob/d1f684699a511826485586b2ea383cf021631add/course/collections/_course/102-shell-scripting/subject.md

Recommended reading

Command Line Introduction

What is a script?

In a Unix-like operating system, a file that can be executed should be one of the

following:

A binary file, which contains machine-readable binary code that has been compiled

from source code.

A script, which is a file containing code that is dynamically interpreted.

How is a script executed?

When an executable text file is run, a Unix-like operating system looks for a shebang on

the first line. A shebang is a line with the following format:

#!interpreter optional-args

For example, the following is a valid shebang:

#!/bin/bash

In this example, it tells the operating system that the interpreter which should run this

file is /bin/bash , meaning that this is a Bash script.

Note

Note that there must not be any space between #! and the path of the interpreter

/bin/bash .

https://archidep.ch/course/101-command-line/
https://en.wikipedia.org/wiki/Bash_(Unix_shell)

What can I put in a script?

In a bash script, you can put anything you could type in a Bash shell:

#!/bin/bash

echo Hello World

In a PHP script, you can put any PHP code you want:

#!/usr/bin/php

<?php

echo 'Hello World';

?>

Basically, what you can put in a script depends on the interpreter you’re using.

How do I create a script?

Simply create your script:

$> printf '#!/bin/bash\necho Hello World' > test.sh

More information

The printf (print format) command is similar to the echo command but it has

better support for special characters like new lines (\n).

Make it executable:

$> chmod +x test.sh

And run it:

$> ./test.sh

Hello World

All kinds of scripts

The following are a few examples of shebangs, but it is nowhere near exhaustive:

Shebang Script contents

#!/bin/sh Bourne shell commands

#!/bin/bash Bash shell commands

#!/bin/zsh Z shell commands

#!/usr/bin/node Node.js code

#!/usr/bin/php PHP code

#!/usr/bin/python Python code

#!/usr/bin/ruby Ruby code

Note

Of course, the path to the interpreter must correspond to the actual path of the

command used (sh , bash , php , etc). It might differ on your machine. Use

which bash to find the location of the Bash executable, for example.

What is shell scripting?

Shell scripting is the practice of writing scripts that contain series of shell commands

that you want to be able to reuse.

https://en.wikipedia.org/wiki/Bourne_shell
https://en.wikipedia.org/wiki/Bash_(Unix_shell)
https://en.wikipedia.org/wiki/Z_shell
https://nodejs.org/
http://php.net/
https://www.python.org/
https://www.ruby-lang.org/

Any script with a shell as the interpreter is a “shell script”.

A script using PHP as the interpreter is still a script, but it’s not a “shell script”. It’s a PHP

script.

Shell script basics

A few pointers on writing Bash scripts (compatible with most POSIX shells).

Commands

You can use any shell command in a shell script:

#!/bin/bash

echo Hello World

date

ls

This script could print:

Hello World

Thu Jan 10 23:46:52 CET 2019

file.txt directory ...

Working directory

By default, a script executes in the current shell directory.

You can use cd to move around to other directories:

#!/bin/bash

pwd

cd /home

pwd

This script could print:

/some/where/over/the/rainbow

/home

Assuming it was executed from the /some/where/over/the/rainbow directory.

Variables

You can declare and reuse variables in scripts:

#!/bin/bash

FOO=bar

echo $FOO

If your variable contains whitespace (spaces, new lines, etc), be sure to quote it when

declaring and using it to avoid issues:

#!/bin/bash

FOO="bar baz"

echo "$FOO"

Store the output of commands

You can store the result of a command in a variable by wrapping it with backticks:

#!/bin/bash

FILES=`ls -1`

NUMBER_OF_FILES=`echo "$FILES" | wc -l`

echo There are $NUMBER_OF_FILES files

This script would output 10 if there are 10 files in the current directory.

Environment variables

Environment variables are also available as variables in shell scripts:

#!/bin/bash

echo $PATH

To set an environment variable, do it like you would in any Bash shell:

#!/bin/bash

export FOO=bar

Note

The $FOO environment variable in this example will only be set in the context of

this script and its child processes.

Conditionals

Bash has a classic if/then/else construct:

#!/bin/bash

FOO="bar"

if [["$FOO" -eq "foo"]]; then

 echo FOO is foo

elif [["$FOO" -eq "bar"]]; then

 echo FOO is bar

else

 echo foo is something else

fi

More information

The [[]] syntax is a Bash test construct. Also see Bash other comparison

operators.

The test built-in command

The test command which comes with Bash is another way to write some conditions:

#!/bin/bash

EMPTY_VAR=

FULL_VAR="full"

FILE="/path/to/some/file"

if test -z "$EMPTY_VAR"; then

 echo variable is empty

fi

if test -n "$FULL_VAR"; then

 echo variable is not empty

fi

if test -f "$FILE"; then

 echo file exists

else

 echo file does not exist

fi

https://www.tldp.org/LDP/abs/html/testconstructs.html
https://www.tldp.org/LDP/abs/html/comparison-ops.html
https://www.tldp.org/LDP/abs/html/comparison-ops.html

More information

See Bash file test operators and other comparison operators.

Loops

Bash has a for loop:

for item in one two three; do

 echo $item

done

The above code would print:

one

two

three

More information

Bash also has while and until . See loops & branches.

Special variables

Bash has a number of special variables which are always available:

Variable Description

$0 Name of the command being executed.

$1 First argument passed to the script on the command line (and so on with $2 , $3 ,

etc).

$@ All arguments passed to the script.

https://www.tldp.org/LDP/abs/html/fto.html
https://www.tldp.org/LDP/abs/html/comparison-ops.html
https://www.tldp.org/LDP/abs/html/loops.html
https://tldp.org/LDP/abs/html/refcards.html#AEN22402

Variable Description

$? Exit value of the last executed command.

For example, this script says hello to the name passed as the first argument:

#!/bin/bash

echo Hello $1

The set built-in command

The set command is specific to Bash and can be used to toggle its option flags.

For example, the -e option aborts the script if an error occurs, while the -x option

prints commands before executing them:

#!/bin/bash

set -ex

echo Hello World

cat file-that-does-not-exist

echo Done

This script could print:

+ echo Hello World

Hello World

+ cat file-that-does-not-exist

cat: file-that-does-not-exist: No such file or directory

Note that each command is printed with a leading + before being executed, and that

the script stops as soon as an error occurs (which is not the case by default).

https://www.tldp.org/LDP/abs/html/options.html#OPTIONSREF

Functions

You can isolate pieces of code in a function. The special argument variables $1 , $2 ,

etc represent the arguments to the function:

#!/bin/bash

print_hello() {

 echo Hello $1

}

print_hello World

This script would print Hello World .

Variable scope

Note that normal Bash variables have no scope, i.e. they are available in the whole file

and every function.

To declare a variable that is local to a function, use the local keyword:

#!/bin/bash

print_hello() {

 local name=$1

 echo Hello $name

}

print_hello World

echo $name

This script would print Hello World and an empty line, since $name is only defined

within the print_hello function.

References

Shell Style Guide

Advanced Bash Scripting Guide

Test Constructs

File Test Operators

Other Comparison Operators

Loops & Branches

Local Variables

Special Shell Variables

Starting Off With a Sha-Bang

Shell Script

Back to top

https://google.github.io/styleguide/shellguide.html
https://www.tldp.org/LDP/abs/html/
https://www.tldp.org/LDP/abs/html/testconstructs.html
https://www.tldp.org/LDP/abs/html/fto.html
https://www.tldp.org/LDP/abs/html/comparison-ops.html
https://www.tldp.org/LDP/abs/html/loops.html
https://www.tldp.org/LDP/abs/html/localvar.html
https://tldp.org/LDP/abs/html/refcards.html#AEN22402
https://tldp.org/LDP/abs/html/sha-bang.html
https://en.wikipedia.org/wiki/Shell_script

