¥ Architecture & Deployment

2025-2026 v0.1.0 on branch main Rev: d1f684699a511826485586b2ea383cf021631add

Shell Scripting

Learn the basics of shell scripting with Bash.

Table of contents

e What is a script?

How is a script executed?

What can | put in a script?

How do | create a script?

AlL kinds of scripts

e What is shell scripting?

e Shell script basics

Commands

Working directory

Variables

e Store the output of commands

e Environment variables

Conditionals

e The test built-in command

Loops

Special variables

The set built-in command

Functions

e Variable scope

o References

You will need

e A Unix CLI

https://archidep.ch/
https://github.com/ArchiDep/website/tree/main
https://github.com/ArchiDep/website/blob/d1f684699a511826485586b2ea383cf021631add/course/collections/_course/102-shell-scripting/subject.md

Recommended reading

e Command Line Introduction

What is a script?

In a Unix-like operating system, a file that can be executed should be one of the

following:

e A binary file, which contains machine-readable binary code that has been compiled

from source code.

e Ascript, which is a file containing code that is dynamically interpreted.

How is a script executed?

When an executable text file is run, a Unix-like operating system looks for a shebang on

the first line. A shebang is a line with the following format:
#'!interpreter optional-args

For example, the following is a valid shebang:
#!/bin/bash

In this example, it tells the operating system that the interpreter which should run this

fileis /bin/bash , meaning that this is a Bash script.

() Note

Note that there must not be any space between ' #! and the path of the interpreter

/bin/bash .

https://archidep.ch/course/101-command-line/
https://en.wikipedia.org/wiki/Bash_(Unix_shell)

What can | put in a script?

In a bash script, you can put anything you could type in a Bash shell:

#!/bin/bash
echo Hello World

In a PHP script, you can put any PHP code you want:

#!/usr/bin/php
<?php
echo 'Hello World';

?>

Basically, what you can put in a script depends on the interpreter you're using.

How do | create a script?

Simply create your script:
$> printf '#!/bin/bash\necho Hello World' > test.sh

Wl More information

The printf (print format) command is similar to the echo command but it has

better support for special characters like new lines (| \n).

Make it executable:
$> chmod +x test.sh

And run it:

$> ./test.sh
Hello World

All kinds of scripts

The following are a few examples of shebangs, but it is nowhere near exhaustive:

Shebang Script contents
#!/bin/sh Bourne shell commands
#!/bin/bash Bash shell commands
#!/bin/zsh Z shell commands
#!/usr/bin/node Node.js code
#!/usr/bin/php PHP code
#!/usr/bin/python Python code
#!/usr/bin/ruby Ruby code

(O Note

Of course, the path to the interpreter must correspond to the actual path of the
command used (sh , bash , php , etc). It might differ on your machine. Use

which bash to find the location of the Bash executable, for example.

What is shell scripting?

Shell scripting is the practice of writing scripts that contain series of shell commands

that you want to be able to reuse.

https://en.wikipedia.org/wiki/Bourne_shell
https://en.wikipedia.org/wiki/Bash_(Unix_shell)
https://en.wikipedia.org/wiki/Z_shell
https://nodejs.org/
http://php.net/
https://www.python.org/
https://www.ruby-lang.org/

Any script with a shell as the interpreter is a “shell script”

A script using PHP as the interpreter is still a script, but it’s not a “shell script”. It's a PHP

script.

Shell script basics

A few pointers on writing Bash scripts (compatible with most POSIX shells).

Commands

You can use any shell command in a shell script:

#!/bin/bash

echo Hello World
date

1s

This script could print:

Hello World
Thu Jan 10 23:46:52 CET 2019
file.txt directory ...

Working directory

By default, a script executes in the current shell directory.

You can use ' cd to move around to other directories:

#!/bin/bash
pwd
cd /home

pwd

This script could print:

/some/where/over/the/rainbow

/home

Assuming it was executed from the /some/where/over/the/rainbow directory.

Variables

You can declare and reuse variables in scripts:

#!/bin/bash
FOO=bar
echo $F00

If your variable contains whitespace (spaces, new lines, etc), be sure to quote it when

declaring and using it to avoid issues:

#!/bin/bash
FOO="bar baz"
echo "$FOO"

Store the output of commands

You can store the result of a command in a variable by wrapping it with backticks:

#!/bin/bash

FILES="1s -1°

NUMBER_OF_FILES="echo "$FILES" | wc -1°
echo There are $NUMBER_OF_FILES files

This script would output 10 if there are 10 files in the current directory.

Environment variables

Environment variables are also available as variables in shell scripts:

#!/bin/bash
echo $PATH

To set an environment variable, do it like you would in any Bash shell:

#!/bin/bash
export FOO=bar

(O Note

The | $F00 ' environment variable in this example will only be set in the context of

this script and its child processes.

Conditionals

Bash has a classic if/then/else construct:

#!/bin/bash
FOO="bar"

if [["$FO0" -eq "foo" 1]; then

echo FOO is foo

elif [["$F00" -eq "bar" 1]; then
echo FOO is bar

else
echo foo is something else

fi

Wl More information

The [[1] syntaxis a Bash test construct. Also see Bash other comparison

operators.

The test built-in command

The ' test command which comes with Bash is another way to write some conditions:

#!/bin/bash

EMPTY_VAR=
FULL_VAR="full"
FILE="/path/to/some/file"

if test -z "$EMPTY_VAR"; then
echo variable is empty

fi

if test —-n "$FULL_VAR"; then
echo variable is not empty

fi

if test —f "$FILE"; then
echo file exists

else
echo file does not exist

fi

https://www.tldp.org/LDP/abs/html/testconstructs.html
https://www.tldp.org/LDP/abs/html/comparison-ops.html
https://www.tldp.org/LDP/abs/html/comparison-ops.html

Wl More information

See Bash file test operators and other comparison operators.

Loops

Bash has a ' for loop:

for item in one two three; do
echo $item

done

The above code would print:

one
two

three

Wl More information

Bash also has while and until .See loops & branches.

Special variables

Bash has a number of special variables which are always available:

Variable Description

$0 Name of the command being executed.
$1 First argument passed to the script on the command line (and so on with = $2 , $3
etc).

$@ All arguments passed to the script.

https://www.tldp.org/LDP/abs/html/fto.html
https://www.tldp.org/LDP/abs/html/comparison-ops.html
https://www.tldp.org/LDP/abs/html/loops.html
https://tldp.org/LDP/abs/html/refcards.html#AEN22402

Variable Description

$? Exit value of the last executed command.

For example, this script says hello to the name passed as the first argument:

#!/bin/bash
echo Hello $1

The set built-in command
The set command is specific to Bash and can be used to toggle its option flags.

For example, the ' —e # option aborts the script if an error occurs, while the ' —x option

prints commands before executing them:

#!/bin/bash

set —ex

echo Hello World

cat file-that-does—not-exist

echo Done

This script could print:

+ echo Hello World
Hello World
+ cat file-that-does—not-exist

cat: file-that-does—-not-exist: No such file or directory

Note that each command is printed with a leading ' + before being executed, and that

the script stops as soon as an error occurs (which is not the case by default).

https://www.tldp.org/LDP/abs/html/options.html#OPTIONSREF

Functions

You can isolate pieces of code in a function. The special argument variables ' $1 , $2 ,

etc represent the arguments to the function:

#!/bin/bash
print_hello() {

echo Hello $1

print_hello World

This script would print Hello World .

Variable scope

Note that normal Bash variables have no scope, i.e. they are available in the whole file

and every function.

To declare a variable that is local to a function, use the ' local keyword:

#!/bin/bash

print_hello() {
local name=$1

echo Hello $name

print_hello World

echo $name

This script would print . Hello World and an empty line, since ' $name is only defined

within the print_hello function.

References

e Shell Style Guide

e Advanced Bash Scripting_Guide

e Test Constructs

* File Test Operators

e Other Comparison Operators

* Loops & Branches

* Local Variables

e Special Shell Variables

e Starting Off With a Sha-Bang

e Shell Script

T Backto top

https://google.github.io/styleguide/shellguide.html
https://www.tldp.org/LDP/abs/html/
https://www.tldp.org/LDP/abs/html/testconstructs.html
https://www.tldp.org/LDP/abs/html/fto.html
https://www.tldp.org/LDP/abs/html/comparison-ops.html
https://www.tldp.org/LDP/abs/html/loops.html
https://www.tldp.org/LDP/abs/html/localvar.html
https://tldp.org/LDP/abs/html/refcards.html#AEN22402
https://tldp.org/LDP/abs/html/sha-bang.html
https://en.wikipedia.org/wiki/Shell_script

