
Architecture & Deployment

2025-2026 v0.1.0 on branch main Rev: d1f684699a511826485586b2ea383cf021631add

Hello Shell

In this exercise, you’ll set up a mini treasure hunt for adventurers navigating your server

via the Command Line. You’ll automate this hunt using Shell Scripting. This activity aims

to help you become more familiar with the command line’s fundamental tools and the

automation of tasks through basic scripting.

Legend

Parts of this exercise are annotated with the following icons:

A task you MUST perform to complete the exercise

🛠️ Execute these tasks solely using Terminal or Git Bash. Utilizing GUI tools would

defeat the purpose.

 Legend

 Creating directories and files

 Adding clues

 Test the treasure hunt

 Automate the treasure hunt using shell scripting

 Make auto_hunt executable

 Running auto_hunt from any directory

 What just happened?

Table of contents

https://archidep.ch/
https://github.com/ArchiDep/website/tree/main
https://github.com/ArchiDep/website/blob/d1f684699a511826485586b2ea383cf021631add/course/collections/_course/103-hello-shell/exercise.md
https://archidep.ch/course/101-command-line/
https://archidep.ch/course/102-shell-scripting/

An optional step that you may perform to make sure that everything is working

correctly, or to set up additional tools that are not required but can help you

The end of the exercise

The architecture of the software you ran or deployed during this exercise.

Troubleshooting tips: how to fix common problems you might encounter

Creating directories and files

We’re already familiar with the pwd , cd , ls , mkdir , touch , echo , and cat

commands. Using the relevant commands, perform the tasks below:

Starting from your home (~) directory, create a new directory named

treasure_hunt .

Within the treasure_hunt directory, craft three additional directories: cave ,

forest , and lake .

Create the following files: cave/echo.txt , lake/fish.txt , and

forest/tree.txt .

In Unix-like operating systems, the tilde (~) symbol is a shorthand

representation for a user’s home directory. It’s a convenient way to refer to this

directory without needing to know or type the full path.

For instance, if a user’s home directory is /home/username , typing cd ~ in

the terminal would navigate them directly to that location. The tilde is

recognized and expanded to the full path by the shell, making it an efficient

shortcut. Additionally, the tilde can be combined with other directory or file

names, such as ~/Documents , to quickly reference subdirectories or files

within the home directory.

Challenge

As an added challenge: find a way to perform this step of the exercise using no more

than two commands.

Adding clues

Using your preferred method, update the files we just created with the specified content:

cave/echo.txt : To uncover the next clue, explore where the water flows.

lake/fish.txt : Venture deep into the woods to discover the last hint.

forest/tree.txt : curl parrot.live

The adoption of the tilde as a shortcut has become a deeply ingrained

convention in the command-line world, providing users with a quick and

consistent way to access their personal files and settings.

The curl command is a versatile tool used primarily for transferring data

using various protocols, most commonly HTTP and HTTPS. For beginners diving

into the world of command-line operations, think of curl as a way to

communicate with websites and servers directly from the terminal without the

need for a web browser.

Whether you’re trying to fetch the contents of a web page, download a file, or

interact with APIs, curl is your go-to utility. Its name stands for Client URL,

underscoring its capability to work with URLs to retrieve or send data.

Beginners often start with basic curl commands, like curl

https://example.com , which fetches and displays the content of the

specified web page in the terminal. As users become more accustomed to it,

they’ll find that curl offers a wide range of options and parameters to

Test the treasure hunt

Ensure your setup is in order:

Transition to the treasure_hunt directory.

Examine the contents of echo.txt within the cave directory.

Guided by the clue, proceed to the subsequent directory.

Unravel the next hint and move forward accordingly.

Input the concluding hint into the terminal.

Relish your discovered treasure.

Automate the treasure hunt using shell scripting

Follow these steps to script and automate your entire treasure hunt:

In the treasure_hunt directory, create a file named auto_hunt .

Launch your go-to command-line text editor to edit the auto_hunt file.

Add the following line at the top of the file: #!/bin/bash

Systematically script the commands to journey through the treasure hunt. Introduce

a theatrical pause of 2 seconds between commands using the sleep command for

heightened suspense.

Tip

customize requests, making it an indispensable tool for many developers and

system administrators.

For a touch of efficiency, consider crafting a function that merges the file reading

and short delay. This promotes reusability throughout your script.

To execute the command found within forest/tree.txt , incorporate: sh

forest/tree.txt .

Preserve your hard work by saving the script and gracefully exiting your text editor.

Jumpstart your treasure hunt automation with the command:

$> sh auto_hunt

The sleep command is a simple yet useful utility in Unix-like operating

systems that pauses the execution of a program or script for a specified

duration. For beginners getting acquainted with scripting or command-line

tasks, think of sleep as a way to introduce deliberate delays. By inputting sleep

followed by a number, the system will pause for that many seconds. For

instance, sleep 5 will introduce a pause of five seconds.

#!/bin/bash

cd ~/treasure_hunt

read_clue() {

 cat $1

 sleep 2

}

read_clue cave/echo.txt

read_clue lake/fish.txt

read_clue forest/tree.txt

Solution

Make auto_hunt executable

Currently, to execute the shell script, you must use the sh command followed by the

script’s precise filepath. Assuming you are in the home directory, try running:

$> ./auto_hunt

permission denied: ./auto_hunt

The error message permission denied: ./auto_hunt that you see indicates that

the shell has been denied the permission to execute the file named auto_hunt . In

Unix-like operating systems, files have certain permissions associated with them,

determining who can read, write, or execute them. When you try to run ./auto_hunt

without the necessary execute permission, the system prevents it from being executed,

leading to this error.

To address this, let’s grant the auto_hunt script execute permissions:

$> chmod +x auto_hunt

More information

At this juncture in the course, delving into the intricacies of Unix permissions isn’t

required. We’ll embark on a deeper exploration of this topic as the semester

progresses.

Running the script now works:

sh forest/tree.txt

$> ./auto_hunt

To find the next clue, search where the water flows

...

Running auto_hunt from any directory

Wouldn’t it be convenient to execute this script without specifying its full path, much like

the other commands we’ve utilized so far? Give this a shot by trying:

$> auto_hunt

command not found: auto_hunt

The error message command not found: auto_hunt essentially means that the shell

couldn’t find a command or program named auto_hunt in the places it usually looks

for such commands. When you type a command in the terminal, the shell searches for

that command in a list of directories specified in a variable called PATH . If the

command or program isn’t located in any of these directories, you’ll get the “command not

found” error.

Let’s probe where our shell currently scouts for executable programs:

$> echo $PATH

/usr/bin:/bin:/usr/sbin:/sbin:/usr/local/bin

The above command displays the contents of the PATH environment variable. The

response enumerates the directories where the shell scans for executable files. As

evident, the ~/treasure_hunt directory is conspicuously absent from this compilation.

Consequently, our shell remains oblivious to any executable linked with the auto_hunt

command.

To add auto_hunt to your PATH , you need to update the PATH environment

variable to include the directory containing the auto_hunt script. Here’s how you can

do it:

You can temporarily add the directory to your PATH for the current session with:

$> export PATH=$PATH:~/treasure_hunt

If you now run the following, you will see that your script is executed:

$> auto_hunt

To find the next clue, search where the water flows

...

Restart your shell and attempt executing auto_hunt once more. Oops! It seems our

PATH has reverted to its original configuration.

To permanently change the PATH , you’ll need to add the export line to your shell’s

initialization file. The specific file depends on the shell you’re using:

For bash (Git Bash), it’s typically ~/.bashrc or ~/.bash_profile .

For zsh (MacOS), it’s ~/.zshrc .

With your preferred command-line text editor, append the following line to the end of

your shell’s initialization file:

export PATH=$PATH:~/treasure_hunt

Let’s break this line down.

export : This command tells the shell to make a variable available for other

processes or commands that come after. When you export a variable, it’s like

announcing to programs and scripts you might run next, “Hey, you can use this!”

PATH : This is one of the most critical environment variables in Unix-like operating

systems. It tells the shell where to look for executable files in response to commands

entered by the user. Its value is a list of directories separated by colons (:).

$PATH : Here, the $ is used to retrieve the current value of the PATH variable. So,

$PATH represents whatever directories are currently in your PATH .

: : In the context of the PATH variable, the colon (:) is used as a delimiter to

separate different directory paths.

~/treasure_hunt : This is a directory named treasure_hunt located within the

user’s home directory.

In this command, we merge several elements together. Firstly, $PATH retrieves the

present PATH value. Then, ~/treasure_hunt gets tacked onto that value. Essentially,

this operation adds the treasure_hunt directory in the user’s home to the roster of

directories the shell peruses when seeking executables. Put plainly, after initiating this

command, the shell will extend its search to the ~/treasure_hunt directory whenever

a command is run, supplementing the directories already listed in your PATH .

To incorporate the modifications made to the startup file without restarting your terminal,

simply “source” the file:

For Bash:

$> source ~/.bash_profile

For zsh:

$> source ~/.zshrc

Now, the auto_hunt command should be accessible from any location in the terminal.

$> auto_hunt

To find the next clue, search where the water flows

...

 .ccccccc.

 .,,,;cooolccoo;;,,.

 .dOx;..;lllll;..;xOd.

 .cdo;',loOXXXXXkll;';odc.

 ,ol:;c,':oko:cccccc,...ckl.

 ;c.;kXo..::..;c::'.......oc

,dc..oXX0kk0o.':lll;..cxxc.,ld,

kNo.'oXXXXXXo',:lll;..oXXOo;cOd.

KOc;oOXXXXXXo.':lol;..dXXXXl';xc

Ol,:k0XXXXXX0c.,clc'.:0XXXXx,.oc

KOc;dOXXXXXXXl..';'..lXXXXXo..oc

dNo..oXXXXXXXOx:..'lxOXXXXXk,.:; ..

cNo..lXXXXXXXXXOolkXXXXXXXXXkl,..;:';.

.,;'.,dkkkkk0XXXXXXXXXXXXXXXXXOxxl;,;,;l:.

 ;c.;:''''':doOXXXXXXXXXXXXXXXXXXOdo;';clc.

 ;c.lOdood:'''oXXXXXXXXXXXXXXXXXXXXXk,..;ol.

 ';.:xxxxxocccoxxxxxxxxxxxxxxxxxxxxxxl::'.';;.

 ';..;l'

What just happened?

In this exercise, we navigated through basic Unix commands. We started by creating

directories and files, and then crafted a “treasure hunt”, where we used these commands

to create and modify files.

We further explored the curl command and its capabilities in interacting with the

Internet directly from the command line. Transitioning to shell scripting, we automated

the treasure hunt sequence with the auto_hunt script.

A challenge arose when trying to run the script from any directory, which led us to tinker

with file permissions and the PATH environment variable. By modifying permissions

and adjusting the PATH , we ensured our script was easily accessible from any location

in the terminal.

Back to top

