HE"

IG

SECURE SHELL (SSH)

Architecture & Deployment

https://heig-vd.ch/
https://github.com/ArchiDep/website/blob/d1f684699a511826485586b2ea383cf021631add/course/collections/_course/104-ssh/slides/slides.md
https://archidep.ch/

WHAT IS SSH?

SSH is a cryptographic network protocol for operating
network services securely over an unsecured network.

WHAT IS IT USED FOR?

Command line login
Git
FTP

HOW DOES IT WORK?

SSH is a client-server protocol.

Speaker notes

Using an SSH client, a user (or application) on machine A can connect to an SSH server running on machine B, either to
log in (with a command line shell) or to execute programs.

HOW IS IT SECURE?

1. SSH establishes a secure channel.
2. It then requires authentication.

Note that steps 1 and 2 are separate and unrelated processes.

STEP 1: THE SECURE CHANNEL

r
SSH Client == &SSH SSH Server

This is done for you and (mostly) automatic.

SSH establishes a secure channel between client and server using various cryptographic techniques. This is
handled automatically by the SSH client and server.

STEP 2: AUTHENTICATION

1. SSH Client 2.SSH Server

. z—d; & SSH -

3.SSH Client

4.SSH Server

The user or service that wants to connect to the SSH server must authenticate to gain access, for example with a
password.

SECURITY THROUGH CRYPTOGRAPHY

e Symmetric encryption
e Asymmetric cryptography
= Key exchange
= Digital signatures
e Hash-based Message Authentication Codes
(HMAC)

https://en.wikipedia.org/wiki/Symmetric-key_algorithm
https://en.wikipedia.org/wiki/Public-key_cryptography
https://en.wikipedia.org/wiki/HMAC
https://en.wikipedia.org/wiki/HMAC

SSH establishes a secure channel between two computers over an insecure network (e.g. a local network or the
Internet). Establishing and using this secure channel requires a combination of various cryptographic techniques.

SYMMETRIC ENCRYPTION

SECRET
KEY

1<AS$t47KP
S52CV#@>?
B\jahs#981
gHTasdsn*
~7BZGWSfg

ORIGINAL TEXT SCRAMBLED DATA ORIGINAL TEXT

Symmetric-key algorithms can be used to encrypt communications between two or more parties using a shared secret.
AES is one such algorithm.

Assuming all parties possess the secret key, they can encrypt data, send it over an insecure network, and decrypt it
on the other side. An attacker who intercepts the data cannot decrypt it without the key (unless a weakness is found

in the algorithm or its implementation).

https://en.wikipedia.org/wiki/Symmetric-key_algorithm
https://en.wikipedia.org/wiki/Advanced_Encryption_Standard
https://en.wikipedia.org/wiki/Cryptanalysis_of_the_Enigma#Operating_shortcomings

EXAMPLE: SYMMETRIC ENCRYPTION WITH AES

cd /path/to/projects

mkdir aes—example

cd aes—example

echo 'too many secrets' > plaintext.txt

$> cat plaintext.txt | openssl aes-256-cbc > ciphertext.aes

enter aes-256-cbc encryption password:
Verifying — enter aes-256-cbc encryption password:

Speaker notes
Create a plaintext file containing the words "too many secrets".

You may encrypt that file with the OpenSSL library (installed on most computers). Executing the example command
pipeline will prompt you for an encryption key.

https://en.wikipedia.org/wiki/Plaintext
https://www.openssl.org/

EXAMPLE: SYMMETRIC DECRYPTION WITH AES

$> cat ciphertext.aes | openssl aes-256-cbc -d

enter aes-256-cbc decryption password:
too many secrets

Speaker notes

The resulting ciphertext stored in the (ciphertext.aes) file cannot be decrypted without the key. Executing the
example command pipeline and entering the same key as before when prompted will decrypt it.

The option makes the command decrypt the provided contents instead of encrypting it.

https://en.wikipedia.org/wiki/Ciphertext

SYMMETRIC ENCRYPTION OVER AN INSECURE NETWORK

* Both parties must have the key
e |tused to be physically transferred

For example in the form of the codebooks used to operate the German Enigma machine during World War Il. But that is
impractical for modern computer networks.

https://en.wikipedia.org/wiki/Enigma_machine#Operation

Bob

O

MAN-IN-THE-MIDDLE ATTACK (MITM)

Hacker (the Man in the Middle)

" Hacker: “Thank you! Now |
_ can decrypt all your data.”

7
‘ Bob: “Let me send you ‘
- the encryption key.” Alice: “Got it."
Phase 1
‘ Bob: “Let's exchange
(L chenpedidatati g ' Alice: “l can decrypt
. 4 ~ Itwith the key.”

Phase '-ﬂ

Insecure network

Alice

Sending the key over the insecure network risks it being compromised by a Man-in-the-Middle attack.

https://en.wikipedia.org/wiki/Man-in-the-middle_attack

ASYMMETRIC CRYPTOGRAPHY

Encryption

Bob
Hello
Alice! —»= Encrypt .
Alice's
public key
6EBG6957
0BEO3CE
Alice
Hello j/h
. 4— Decrypt
Alice! Alice's

private key

Key exchange
Alice
Bob's Combine 751AG696
Public Key keys ! 24D9700
Alice and Bob':

: shared secret
Alice's
Private Key

Alice's L Y

Bob

Public Key '

Bob's
Private Key

Combin T51A696C
keys 24D97009

Alice and Bob's
shared secret

Digital Signatures

Alice

Helle)

Bob "’
Alice's
private key

Bob l
Hello ﬂ"’h
Bob Alice's

public key

Public-key or asymmetric cryptography is any cryptographic system that uses pairs of keys: public keys which may be
disseminated widely, while private keys which are known only to the owner. It has several use cases:

e Encrypting and decrypting data.
e Securely exchanging shared secret keys.
» Verifying identity and protecting against tampering.

https://en.wikipedia.org/wiki/Public-key_cryptography

THE PROPERTIES OF AN ASYMMETRIC KEY PAIR

* Quick & easy to generate a key pair

* Too slow & hard to find the private key from the
public key

e The private key can solve mathematicalsproblems
based on the public key, proving ownership of that
key (but not the other way around)

There is a mathematical relationship between a public and private key, based on problems that currently admit no
efficient solution such as integer factorization, discrete logarithm and elliptic curve relationships.

Here's a mathematical example based on integer factorization, a problem that is computationally economical in one
direction (multiplication) but very computationally expensive in the other (factorization).

Effective security only requires keeping the private key private; the public key can be openly distributed without
compromising security.

https://en.wikipedia.org/wiki/Integer_factorization
https://en.wikipedia.org/wiki/Discrete_logarithm
https://en.wikipedia.org/wiki/Elliptic-curve_cryptography
https://www.onebigfluke.com/2013/11/public-key-crypto-math-explained.html

ASYMMETRIC ENCRYPTION

PRIVATE

PUBLIC
KEY

KEY

1<A$t47KP

52CV#@>?
8\jahs#981
gHTasdsn%
~78ZGWS5fg

ORIGINAL TEXT SCRAMBLED DATA ORIGINAL TEXT

One use case of asymmetric cryptography is asymmetric encryption, where the sender encrypts a message with
the recipient's public key. The message can only be decrypted by the recipient using the matching private key.

EXAMPLE: GENERATE AN ASYMMETRIC RSA KEY PAIR

$> cd /path/to/projects
$> mkdir rsa—example
$> cd rsa—example

$> openssl genrsa —-out private.pem 2048
Generating RSA private key, 2048 bit long modulus

++++++
++++++

e 1s 65537 (0x10001)

$> openssl rsa —in private.pem \
—out public.pem —-outform PEM —-pubout
writing RSA key

Let's try encryption with RSA this time, an asymmetric algorithm. To do that, we need to generate a key pair, i.e. a
private and public key. The example commands will generate first a private key in a file named (private. pem), then
a corresponding public key in a file named (public. pem).

By convention, we use the extension after the Privacy-Enhanced Mail (PEM) format, a de facto standard format
to store cryptographic data.

https://en.wikipedia.org/wiki/RSA_(cryptosystem)
https://en.wikipedia.org/wiki/Privacy-Enhanced_Mail

EXAMPLE: ASYMMETRIC ENCRYPTION WITH RSA

$> echo 'too many secrets' > plaintext.txt

$> openssl pkeyutl —encrypt —-in plaintext.txt \
—inkey public.pem —pubin -out ciphertext.rsa

$> 1s
ciphertext.rsa plaintext.txt private.pem public.pem

You can create a plain text and encrypt it with the public key using the OpenSSL library.

The example command will read the plaintext file (plaintext. txt) specified with the (input) option. It will also
read the public key in the (public. pem) file with the (=in kez) (input key) and (public in) options.

It will then write the encrypted ciphertext to the (ciphertext. rsa) file with the (output) option.

In addition to your key pair, you should have two additional files containing the plaintext and ciphertext:

EXAMPLE: ASYMMETRIC DECRYPTION WITH RSA

$> openssl pkeyutl —-decrypt \
—inkey private.pem - ciphertext.rsa
too many secrets

$> openssl pkeyutl —-decrypt \
—inkey public.pem —-in ciphertext.rsa
unable to load Private Key [...]

$> openssl genrsa —-out hacker—private.pem 1024
$> openssl pkeyutl —-decrypt \

—inkey hacker—private.pem - ciphertext.rsa
RSA operation error [...]

The ciphertext can be decrypted with the corresponding private key. Note that you cannot decrypt the ciphertext
using the public key. Of course, a hacker using another private key cannot decrypt it either.

Hence, you can encrypt data and send it to another party provided that you have their public key. No single shared key
needs to be exchanged (the private key remains a secret known only to the recipient).

ASYMMETRIC ENCRYPTION AND FORWARD SECRECY

" Bob: “Let me encrypt son:l_ém Insecure network Alice: “Cool, 1 can decrypt |t‘
data with your public key - with my private key.
g | _ Alice
>
O Phase 1 \
PF - - PP
Phase 47 _

" Hacker: “I hacked into your

Hacker “| can’t read thls computers and stole your private

But I'll keep it around for ~ keys. Now | can decrypt all the

Iater jUSt in case. - data sent during last month.
1 month later...

Hacker (the Man in the Middle) p’

((p .

Asymmetric encryption protects data sent over an insecure network from attackers, but only as long as the private
keys remain private. It does not provide forward secrecy, meaning that if the private keys are compromised in the
future, all data encrypted in the past is also compromised.

SYMMETRIC VS. ASYMMETRIC ENCRYPTION

Pros Cons
Svmmetric Fast, can be Must send key,
e)nlcr ton iImplemented in no forward
yP hardware secrecy
Asymmetric Vol Slow, no

encryption

forward secrecy

So far we learned that:

e Symmetric encryption works but provides no solution to the problem of securely transmitting the shared secret

key.
o Asymmetric encryption works even better as it does not require a shared secret key, but it does not provide
forward secrecy.

Additionally, it's important to note that symmetric encryption is much faster than asymmetric encryption.

SYMMETRIC ENCRYPTION IN HARDWARE

Speaker notes

Symmetric encryption is also less complex and can easily be implemented as hardware (most modern processors
support hardware-accelerated AES encryption).

This is a hardware security module, a physical computing device that safeguards and manages secrets, performs
encryption and decryption functions for digital signatures, strong authentication and other cryptographic functions

https://en.wikipedia.org/wiki/Hardware_security_module

WHAT CAN WE DO?

It would be nice if we could share a fast symmetric
encryption key... without actually sharing it.

Ideally, we would want to be able to share a fast symmetric encryption key without transmitting it physically or over the
network. This is where asymmetric cryptography comes to the rescue again. Encryption is not all it can do; it can also do

key exchange.

The Diffie-Hellman Key Exchange, invented in 1976 by Whitfield Diffie and Martin Hellman, was one of the first public
key exchange protocols allowing users to securely exchange secret keys even if an attacker is monitoring the
communication channel.

https://en.wikipedia.org/wiki/Diffie%E2%80%93Hellman_key_exchange

DIFFIE-HELLMAN KEY EXCHANGE

Alice Bob

Common paint

Secret colowrs @

|
A
|
A

Public transport

(assume
that mixture separation
is expensive)

Y
A

Secret colomrs

+

Common secret

This conceptual diagram illustrates the general idea behind the protocol:

e Alice and Bob choose a random, public starting color (yellow) together.

o Then they each separately choose a secret color known only to themselves (orange and blue-green).

» Then they mix their own secret color with the mutually shared color (resulting in orange-tan and light-blue)
and publicly exchange the two mixed colors.

o Finally, Alice and Bob mix the color he or she received from each other with his or her own private color
(yellow-brown).

The result is a final color mixture that is identical to the partner's final color mixture, and which was never shared
publicly. When using large numbers rather than colors, it would be computationally difficult for a third party to determine
the secret numbers.

MAN-IN-THE-MIDDLE ATTACK ON DIFFIE-HELLMAN

" Hacker: “Hi Bob. I'm Alice. " Hacker: “Hi Alice. I'm Bob. |
‘ Let me do a valid DH key ‘ - Let me do a valid DH key ‘
exchange with you.” exchange with you.”
O ~—— R ‘p
Phase 1
B r';
Phase 2 L >/ -
Hacker: “Please send me ‘ '- Hacker "Here S the data "

- your encrypted data now.” |

Insecure network

The Diffie-Hellman key exchange solves the problem of transmitting the shared secret key over the network by
computing it using asymmetric cryptography. It is therefore never transmitted.

However, a Man-in-the-Middle attack is still possible if the attacker can position himself between the two parties to
intercept and relay all communications.

ASYMMETRIC DIGITAL SIGNATURE

One of the other main uses of asymmetric cryptography is performing digital signatures. A signature proves that the
message came from a particular sender.

» Assuming Alice wants to send a message to Bob, she can use her private key to create a digital signature
based on the message, and send both the message and the signature to Bob.

» Anyone with Alice's public key can prove that Alice sent that message (only the corresponding private key
could have generated a valid signature for that message).

» The message cannot be tampered with without detection, as the digital signature will no longer be valid
(since it based on both the private key and the message).

Note that a digital signature does not provide confidentiality. Although the message is protected from tampering, it is
not encrypted.

EXAMPLE: DIGITAL SIGNATURE WITH RSA

$> echo "Hello Bob, I like you" > message.txt

$> openssl dgst —-sha256 -sign private.pem \
—out signature.rsa message.txt

$> openssl base64 —-in signature.rsa

Speaker notes

In the same directory as the previous example (asymmetric encryption with RSA), create a Qnessage. txt) file with the
message that we want to digitally sign.

The example OpenSSL command will use the private key file (private.pem) (from the previous example) and
generate a digital signature based on the message file (nessage. txt). The signature will be stored in the file
(signature.rsa).

If you open the file, you can see that it's simply binary data. You can see it base64-encoded with the second example
command.

EXAMPLE: VERIFYING A DIGITAL SIGNATURE WITH RSA

$> openssl dgst -sha256 -verify public.pem \
—signature signature.rsa message.txt

Verified OK

$> openssl dgst —-sha256 -verify public.pem \
—signature signature.rsa message.txt
Verification Failure

Speaker notes

The example command uses the public key to check that the signature is valid for the message. If you modify the
message file and run the command again, it will detect that the digital signature no longer matches the message:

CRYPTOGRAPHIC HASH FUNCTIONS & MACS

Input Digest
Fox cryptﬁag;r?ph'c DFCD 3454 BBEA 788A 751A
I X 696C 24D9 7009 CA99 2D17
function
Tz b e R 0086 46BE FB7D CBE2 823C
jumps over ——P~ hash
X ACC7 6CD1 90Bl EE6E 3ABC
the blue dog function
e R 8FD8 7558 7851 4F32 D1C6
jumps ouer —P~ hash
X 76B1 79A9 ODA4 AEFE 4819
the blue dog function
The red fox i
T cryptﬁgrﬁ'ph'c FCD3 7FDB 5AF2 C6FF 915F
jump : asl D401 COA9 7D9A 46AF FB45
the blue dog function
Lhn? r:::fx cryptﬁgrﬁ'ph'c SACA D682 D588 4C75 4BF4
jump ' asl 1799 7D88 BCFS 92B9 6A6C
the blue dog function

Speaker notes

A cryptographic hash function is a hash function that has the following properties:

e The same message always results in the same hash (deterministic).
e Computing the hash value of any message is quick.
 ltis infeasible to generate a message from its hash value except by trying all possible messages (one-way).

e A small change to a message should change the hash value so extensively that the new hash value appears
uncorrelated with the old hash value.

o ltis infeasible to find two different messages with the same hash value (collisions).

SSH uses Message Authentication Codes (MAC), which are based on cryptographic hash functions, to protect both the
data integrity and authenticity of all messages sent through the secure channel.

https://en.wikipedia.org/wiki/Cryptographic_hash_function
https://en.wikipedia.org/wiki/Hash_function
https://en.wikipedia.org/wiki/Message_authentication_code

Bob

COMBINING IT ALL TOGETHER IN SSH

Insecure network

O = ‘O = DH — ‘p -

= -—

— la. Diffie-Hellman key exchange N
1b. Exchange parameters digitally signed

- c@-r -

2a. Data encrypted with symmetric key (from DH exchange)
2b. Data authenticity and integrity protected by MACs

S

3. Symmetric key is ephemeral and disappears
after the channel is closed (forward secrecy)

Alice

P2

Speaker notes

SSH uses most of the previous cryptographic techniques we've seen together to achieve as secure a channel as
possible.

MAN-IN-THE-MIDDLE ATTACK ON SSH

~ Hacker: “Hi Bob. I'm Alice. Letmedoa f | Hacker: “Hi Alice. I'm Bob. Let me do é'
signed DH key exchange with you. (I'm signed DH key exchange with you. (I'm
hoping you won't look too closely since ~ hoping you won't look too closely since

I signed it with my key instead of Alice’s.)” I signed it with my key instead of Bob’s.)” |
\ | Insecure network - y
Hacker (the Man in the Middle) 4 Alice

P — —B-H——-» <——BH——»

O e
&

Hacker “Please send me Hacker: “Here’s the data.” ‘

~your encrypted data now.”

THREATS COUNTERED

e Eavesdropping

e Connection hijacking

e DNS an IP spoofing

e Man-in-the-Middle attack

As long as you check the public key!

SSH counters the following threats:

o Eavesdropping: an attacker can intercept but not decrypt communications going through SSH's secure channel.

» Connection hijacking: an active attacker can hijack TCP connections due to a weakness in TCP. SSH's
integrity checking detects this and shuts down the connection without using the corrupted data.

« DNS and IP spoofing: an attacker may hack your naming service to direct you to the wrong machine.

» Man-in-the-Middle attack: an attacker may intercept all traffic between you and the real target machine.

The last two are countered by the asymmetric digital signature performed by the server on the DH key exchange, as
long as the client actually checks the server-supplied public key. Otherwise, there is no guarantee that the server
IS genuine.

THREATS NOT COUNTERED

Password crackin & (common passwords: 123456, password, qwerty1)
|P/TCP denial of service

Traffic analysis

Carelessness and coffee spills =

Genius mathematicians idyou see sneakers?

I MAGINATION &

A CRYPTO NERD'S

HIS LAPTOPs ENCRYPTED.
LETS BUILD A MILLION-DOLLAR,
l:Lus'rER To CRACK 1T

NO GOOD! TS
uoGe -BIT R%ﬁ'-

Euu_ PLPM
1S FOILED! xﬁﬂ?&

1 ACTUALLY HAPPEN:

WHAT WoULD

HIS LAPTOP'S ENCRYPTED.
DRUG HIM AND HIT HIM WITH

THIS $5 WRENCH UNTIL
HE -rEus LS THE. PASSWORD.

GOT T,

%W

https://en.wikipedia.org/wiki/List_of_the_most_common_passwords
https://en.wikipedia.org/wiki/Sneakers_(1992_film)

SSH does not counter the following threats:

o Password cracking: if password authentication is enabled, a weak password might be easily brute-forced or
obtained through side-channel attacks. Consider using public key authentication instead to mitigate some of
these risks.

» IP/TCP denial of service: since SSH operates on top of TCP, it is vulnerable to attacks against weaknesses in
TCP and IP, such as SYN flood.

» Traffic analysis: although the encrypted traffic cannot be read, an attacker can still glean a great deal of
information by simply analyzing the amount of data, the source and target addresses, and the timing.

» Carelessness and coffee spills: SSH doesn't protect you if you write your password on a post-it note and paste
it on your computer screen.

¢ Genius mathematicians: did you see Sneakers?

https://en.wikipedia.org/wiki/Cryptanalysis#Side-channel_attacks
https://en.wikipedia.org/wiki/SYN_flood
https://en.wikipedia.org/wiki/Sneakers_(1992_film)

