
SECURE SHELL (SSH)
Architecture & Deployment

1ArchiDep 25-26 main@d1f6846

https://heig-vd.ch/
https://github.com/ArchiDep/website/blob/d1f684699a511826485586b2ea383cf021631add/course/collections/_course/104-ssh/slides/slides.md
https://archidep.ch/

WHAT IS SSH?
SSH is a cryptographic network protocol for operating
network services securely over an unsecured network.

2

WHAT IS IT USED FOR?
Command line login

Git

FTP

3

HOW DOES IT WORK?
SSH is a client-server protocol.

SSH Client SSH Client

SSH Client

SSH Server

4

Using an SSH client, a user (or application) on machine A can connect to an SSH server running on machine B, either to
log in (with a command line shell) or to execute programs.

Speaker notes

HOW IS IT SECURE?
1. SSH establishes a secure channel.
2. It then requires authentication.

5

Note that steps 1 and 2 are separate and unrelated processes.

Speaker notes

STEP 1: THE SECURE CHANNEL

SSH Client SSH Server

This is done for you and (mostly) automatic.

6

SSH establishes a secure channel between client and server using various cryptographic techniques. This is
handled automatically by the SSH client and server.

Speaker notes

STEP 2: AUTHENTICATION
1. SSH Client

3. SSH Client

2. SSH Server

4. SSH Server

Hi, I'd like to log in as user "bob".

Here's bob's password.

Oh yeah? How do I know you're bob?

Go right ahead.

7

The user or service that wants to connect to the SSH server must authenticate to gain access, for example with a
password.

Speaker notes

SECURITY THROUGH CRYPTOGRAPHY

Key exchange
Digital signatures

Symmetric encryption
Asymmetric cryptography

Hash-based Message Authentication Codes
(HMAC)

8

https://en.wikipedia.org/wiki/Symmetric-key_algorithm
https://en.wikipedia.org/wiki/Public-key_cryptography
https://en.wikipedia.org/wiki/HMAC
https://en.wikipedia.org/wiki/HMAC

SSH establishes a secure channel between two computers over an insecure network (e.g. a local network or the
Internet). Establishing and using this secure channel requires a combination of various cryptographic techniques.

Speaker notes

SYMMETRIC ENCRYPTION

9

 can be used to encrypt communications between two or more parties using a shared secret.
 is one such algorithm.

Assuming all parties possess the secret key, they can encrypt data, send it over an insecure network, and decrypt it
on the other side. An attacker who intercepts the data cannot decrypt it without the key (unless a weakness is found
in the algorithm or).

Speaker notes

Symmetric-key algorithms
AES

its implementation

https://en.wikipedia.org/wiki/Symmetric-key_algorithm
https://en.wikipedia.org/wiki/Advanced_Encryption_Standard
https://en.wikipedia.org/wiki/Cryptanalysis_of_the_Enigma#Operating_shortcomings

EXAMPLE: SYMMETRIC ENCRYPTION WITH AES
Create a "plaintext" file
$> cd /path/to/projects
$> mkdir aes-example
$> cd aes-example
$> echo 'too many secrets' > plaintext.txt

Encrypt the plaintext
$> cat plaintext.txt | openssl aes-256-cbc > ciphertext.aes
enter aes-256-cbc encryption password:
Verifying - enter aes-256-cbc encryption password:

10

Create a file containing the words "too many secrets".

You may encrypt that file with the (installed on most computers). Executing the example command
pipeline will prompt you for an encryption key.

Speaker notes

plaintext

OpenSSL library

https://en.wikipedia.org/wiki/Plaintext
https://www.openssl.org/

EXAMPLE: SYMMETRIC DECRYPTION WITH AES
Decrypt the ciphertext
$> cat ciphertext.aes | openssl aes-256-cbc -d
enter aes-256-cbc decryption password:
too many secrets

11

The resulting stored in the ciphertext.aes file cannot be decrypted without the key. Executing the
example command pipeline and entering the same key as before when prompted will decrypt it.

The -d option makes the command decrypt the provided contents instead of encrypting it.

Speaker notes

ciphertext

https://en.wikipedia.org/wiki/Ciphertext

SYMMETRIC ENCRYPTION OVER AN INSECURE NETWORK
Both parties must have the key
It used to be physically transferred

12

For example in the form of the codebooks used to operate the German during World War II. But that is
impractical for modern computer networks.

Speaker notes

Enigma machine

https://en.wikipedia.org/wiki/Enigma_machine#Operation

MAN-IN-THE-MIDDLE ATTACK (MITM)

13

Sending the key over the insecure network risks it being compromised by a .

Speaker notes

Man-in-the-Middle attack

https://en.wikipedia.org/wiki/Man-in-the-middle_attack

ASYMMETRIC CRYPTOGRAPHY
Encryption Key exchange Digital Signatures

14

 is any cryptographic system that uses pairs of keys: public keys which may be
disseminated widely, while private keys which are known only to the owner. It has several use cases:

Encrypting and decrypting data.
Securely exchanging shared secret keys.
Verifying identity and protecting against tampering.

Speaker notes

Public-key or asymmetric cryptography

https://en.wikipedia.org/wiki/Public-key_cryptography

THE PROPERTIES OF AN ASYMMETRIC KEY PAIR
Quick & easy to generate a key pair
Too slow & hard to find the private key from the
public key
The private key can solve mathematicalsproblems
based on the public key, proving ownership of that
key (but not the other way around)

15

There is a mathematical relationship between a public and private key, based on problems that currently admit no
efficient solution such as , and relationships.

Here's a based on integer factorization, a problem that is computationally economical in one
direction (multiplication) but very computationally expensive in the other (factorization).

Effective security only requires keeping the private key private; the public key can be openly distributed without
compromising security.

Speaker notes

integer factorization discrete logarithm elliptic curve

mathematical example

https://en.wikipedia.org/wiki/Integer_factorization
https://en.wikipedia.org/wiki/Discrete_logarithm
https://en.wikipedia.org/wiki/Elliptic-curve_cryptography
https://www.onebigfluke.com/2013/11/public-key-crypto-math-explained.html

ASYMMETRIC ENCRYPTION

16

One use case of asymmetric cryptography is asymmetric encryption, where the sender encrypts a message with
the recipient's public key. The message can only be decrypted by the recipient using the matching private key.

Speaker notes

EXAMPLE: GENERATE AN ASYMMETRIC RSA KEY PAIR
$> cd /path/to/projects
$> mkdir rsa-example
$> cd rsa-example

Generate a private key
$> openssl genrsa -out private.pem 2048
Generating RSA private key, 2048 bit long modulus
.............++++++
.................................++++++
e is 65537 (0x10001)

Generate public key from the private key (quick & easy)
$> openssl rsa -in private.pem \
 -out public.pem -outform PEM -pubout
writing RSA key

17

Let's try encryption with this time, an asymmetric algorithm. To do that, we need to generate a key pair, i.e. a
private and public key. The example commands will generate first a private key in a file named private.pem , then
a corresponding public key in a file named public.pem .

By convention, we use the .pem extension after the , a de facto standard format
to store cryptographic data.

Speaker notes

RSA

Privacy-Enhanced Mail (PEM) format

https://en.wikipedia.org/wiki/RSA_(cryptosystem)
https://en.wikipedia.org/wiki/Privacy-Enhanced_Mail

EXAMPLE: ASYMMETRIC ENCRYPTION WITH RSA
Create a plaintext
$> echo 'too many secrets' > plaintext.txt

Encrypt the plaintext with the public key
$> openssl pkeyutl -encrypt -in plaintext.txt \
 -inkey public.pem -pubin -out ciphertext.rsa

See what's there
$> ls
ciphertext.rsa plaintext.txt private.pem public.pem

18

You can create a plain text and encrypt it with the public key using the OpenSSL library.

The example command will read the plaintext file plaintext.txt specified with the -in (input) option. It will also
read the public key in the public.pem file with the -inkey (input key) and -pubin (public in) options.

It will then write the encrypted ciphertext to the ciphertext.rsa file with the -out (output) option.

In addition to your key pair, you should have two additional files containing the plaintext and ciphertext:

Speaker notes

EXAMPLE: ASYMMETRIC DECRYPTION WITH RSA
Decrypt the ciphertext with the private key
$> openssl pkeyutl -decrypt \
 -inkey private.pem -in ciphertext.rsa
too many secrets

It does not work with the public key
$> openssl pkeyutl -decrypt \
 -inkey public.pem -in ciphertext.rsa
unable to load Private Key [...]

It does not work either with another private key
$> openssl genrsa -out hacker-private.pem 1024
$> openssl pkeyutl -decrypt \
 -inkey hacker-private.pem -in ciphertext.rsa
RSA operation error [...]

19

The ciphertext can be decrypted with the corresponding private key. Note that you cannot decrypt the ciphertext
using the public key. Of course, a hacker using another private key cannot decrypt it either.

Hence, you can encrypt data and send it to another party provided that you have their public key. No single shared key
needs to be exchanged (the private key remains a secret known only to the recipient).

Speaker notes

ASYMMETRIC ENCRYPTION AND FORWARD SECRECY

20

Asymmetric encryption protects data sent over an insecure network from attackers, but only as long as the private
keys remain private. It does not provide forward secrecy, meaning that if the private keys are compromised in the
future, all data encrypted in the past is also compromised.

Speaker notes

SYMMETRIC VS. ASYMMETRIC ENCRYPTION
Pros Cons

Symmetric
encryption

Fast, can be
implemented in
hardware

Must send key,
no forward
secrecy

Asymmetric
encryption No shared key Slow, no

forward secrecy

21

So far we learned that:

Symmetric encryption works but provides no solution to the problem of securely transmitting the shared secret
key.
Asymmetric encryption works even better as it does not require a shared secret key, but it does not provide
forward secrecy.

Additionally, it's important to note that symmetric encryption is much faster than asymmetric encryption.

Speaker notes

SYMMETRIC ENCRYPTION IN HARDWARE

22

Symmetric encryption is also less complex and can easily be implemented as hardware (most modern processors
support hardware-accelerated AES encryption).

This is a , a physical computing device that safeguards and manages secrets, performs
encryption and decryption functions for digital signatures, strong authentication and other cryptographic functions

Speaker notes

hardware security module

https://en.wikipedia.org/wiki/Hardware_security_module

WHAT CAN WE DO?
It would be nice if we could share a fast symmetric

encryption key... without actually sharing it.

23

Ideally, we would want to be able to share a fast symmetric encryption key without transmitting it physically or over the
network. This is where asymmetric cryptography comes to the rescue again. Encryption is not all it can do; it can also do
key exchange.

The , invented in 1976 by Whitfield Diffie and Martin Hellman, was one of the first public
key exchange protocols allowing users to securely exchange secret keys even if an attacker is monitoring the
communication channel.

Speaker notes

Diffie-Hellman Key Exchange

https://en.wikipedia.org/wiki/Diffie%E2%80%93Hellman_key_exchange

DIFFIE-HELLMAN KEY EXCHANGE

24

This conceptual diagram illustrates the general idea behind the protocol:

Alice and Bob choose a random, public starting color (yellow) together.
Then they each separately choose a secret color known only to themselves (orange and blue-green).
Then they mix their own secret color with the mutually shared color (resulting in orange-tan and light-blue)
and publicly exchange the two mixed colors.
Finally, Alice and Bob mix the color he or she received from each other with his or her own private color
(yellow-brown).

The result is a final color mixture that is identical to the partner's final color mixture, and which was never shared
publicly. When using large numbers rather than colors, it would be computationally difficult for a third party to determine
the secret numbers.

Speaker notes

MAN-IN-THE-MIDDLE ATTACK ON DIFFIE-HELLMAN

25

The Diffie-Hellman key exchange solves the problem of transmitting the shared secret key over the network by
computing it using asymmetric cryptography. It is therefore never transmitted.

However, a Man-in-the-Middle attack is still possible if the attacker can position himself between the two parties to
intercept and relay all communications.

Speaker notes

ASYMMETRIC DIGITAL SIGNATURE

26

One of the other main uses of asymmetric cryptography is performing digital signatures. A signature proves that the
message came from a particular sender.

Assuming Alice wants to send a message to Bob, she can use her private key to create a digital signature
based on the message, and send both the message and the signature to Bob.
Anyone with Alice's public key can prove that Alice sent that message (only the corresponding private key
could have generated a valid signature for that message).
The message cannot be tampered with without detection, as the digital signature will no longer be valid
(since it based on both the private key and the message).

Note that a digital signature does not provide confidentiality. Although the message is protected from tampering, it is
not encrypted.

Speaker notes

EXAMPLE: DIGITAL SIGNATURE WITH RSA
Create a message file
$> echo "Hello Bob, I like you" > message.txt

Create a digital signature for
that message with the private key
$> openssl dgst -sha256 -sign private.pem \
 -out signature.rsa message.txt

See the signature (base64-encoded)
$> openssl base64 -in signature.rsa

27

In the same directory as the previous example (asymmetric encryption with RSA), create a message.txt file with the
message that we want to digitally sign.

The example OpenSSL command will use the private key file private.pem (from the previous example) and
generate a digital signature based on the message file message.txt . The signature will be stored in the file
signature.rsa .

If you open the file, you can see that it's simply binary data. You can see it base64-encoded with the second example
command.

Speaker notes

EXAMPLE: VERIFYING A DIGITAL SIGNATURE WITH RSA
$> openssl dgst -sha256 -verify public.pem \
 -signature signature.rsa message.txt
Verified OK

Modify the message...

$> openssl dgst -sha256 -verify public.pem \
 -signature signature.rsa message.txt
Verification Failure

28

The example command uses the public key to check that the signature is valid for the message. If you modify the
message file and run the command again, it will detect that the digital signature no longer matches the message:

Speaker notes

CRYPTOGRAPHIC HASH FUNCTIONS & MACS

29

A is a that has the following properties:

The same message always results in the same hash (deterministic).

Computing the hash value of any message is quick.

It is infeasible to generate a message from its hash value except by trying all possible messages (one-way).

A small change to a message should change the hash value so extensively that the new hash value appears
uncorrelated with the old hash value.

It is infeasible to find two different messages with the same hash value (collisions).

SSH uses , which are based on cryptographic hash functions, to protect both the
data integrity and authenticity of all messages sent through the secure channel.

Speaker notes

cryptographic hash function hash function

Message Authentication Codes (MAC)

https://en.wikipedia.org/wiki/Cryptographic_hash_function
https://en.wikipedia.org/wiki/Hash_function
https://en.wikipedia.org/wiki/Message_authentication_code

COMBINING IT ALL TOGETHER IN SSH

30

SSH uses most of the previous cryptographic techniques we've seen together to achieve as secure a channel as
possible.

Speaker notes

MAN-IN-THE-MIDDLE ATTACK ON SSH

31

THREATS COUNTERED

Eavesdropping
Connection hijacking
DNS an IP spoofing
Man-in-the-Middle attack

As long as you check the public key!

32

SSH counters the following threats:

Eavesdropping: an attacker can intercept but not decrypt communications going through SSH's secure channel.
Connection hijacking: an active attacker can hijack TCP connections due to a weakness in TCP. SSH's
integrity checking detects this and shuts down the connection without using the corrupted data.
DNS and IP spoofing: an attacker may hack your naming service to direct you to the wrong machine.
Man-in-the-Middle attack: an attacker may intercept all traffic between you and the real target machine.

The last two are countered by the asymmetric digital signature performed by the server on the DH key exchange, as
long as the client actually checks the server-supplied public key. Otherwise, there is no guarantee that the server
is genuine.

Speaker notes

THREATS NOT COUNTERED

Password cracking (: 123456, password, qwerty1)

IP/TCP denial of service
Traffic analysis
Carelessness and coffee spills
Genius mathematicians (did you see ?)

common passwords

Sneakers

33

https://en.wikipedia.org/wiki/List_of_the_most_common_passwords
https://en.wikipedia.org/wiki/Sneakers_(1992_film)

SSH does not counter the following threats:

Password cracking: if password authentication is enabled, a weak password might be easily brute-forced or
obtained through . Consider using public key authentication instead to mitigate some of
these risks.

IP/TCP denial of service: since SSH operates on top of TCP, it is vulnerable to attacks against weaknesses in
TCP and IP, such as .

Traffic analysis: although the encrypted traffic cannot be read, an attacker can still glean a great deal of
information by simply analyzing the amount of data, the source and target addresses, and the timing.

Carelessness and coffee spills: SSH doesn't protect you if you write your password on a post-it note and paste
it on your computer screen.

Genius mathematicians: did you see ?

Speaker notes

side-channel attacks

SYN flood

Sneakers

https://en.wikipedia.org/wiki/Cryptanalysis#Side-channel_attacks
https://en.wikipedia.org/wiki/SYN_flood
https://en.wikipedia.org/wiki/Sneakers_(1992_film)

