¥ Architecture & Deployment

2025-2026 v0.1.0 on branch main Rev: d1f684699a511826485586b2ea383cf021631add

Secure Shell (53H)

Learn about the SSH cryptographic network protocol and how to use the SSH command

line tool to connect to other computers.

Table of contents

e Presentation

e The ssh command

e SSH known hosts

e Are you really the SSH server I'm looking for?

e How can | solve this problem?

e Known hosts file

e Adding_public keys to the known hosts file

e Preventing future man-in-the-middle attacks

e Password authentication

e Logging_in with SSH

e Typing_commands while connected through SSH

* Disconnecting

o Where am I?

e Logging_in or running_.a command

e Public key authentication

o How does it work?

e How does public key authentication work?

e Using multiple keys

e Key management

e Key protection

e SSH for other network services

e The birth (or death) of an SSH connection

o References

https://archidep.ch/
https://github.com/ArchiDep/website/tree/main
https://github.com/ArchiDep/website/blob/d1f684699a511826485586b2ea383cf021631add/course/collections/_course/104-ssh/subject.md

You will need

e A Unix CLI

Recommended reading

¢ Command Line Introduction

The ssh command

The ' ssh command is available on most Unix-like systems (e.g. Linux & macOS) and in

Unix shells on Windows (e.g. Git Bash or WSL). Its basic syntax is:

ssh [user@]hostname [command]

Here’s a few examples:
e ssh example.com -Connectto the SSH server at example.com and log in (with
the same username as in your current shell).

e ssh jde@example.com -Connecttothe SSH server at example.com and log in

as user jde .

e ssh jde@192.168.50.4 hostname -Runthe hostname command as user

jde onthe SSH server at 192.168.50.4 .

Run ' man ssh to see available options (or just ' ssh in Git Bash).

SSH known hosts

When you connect to an SSH server for the first time, you will most likely get a message

similar to this:

https://archidep.ch/course/cli/

$> ssh example.com
The authenticity of host 'example.com (192.168.50.4)' can't be established.
ECDSA key fingerprint is SHA256:colYVucS/YUQIJSK7woilLAf5ChPgJYAR1BWILET2EwWDI=

Are you sure you want to continue connecting (yes/no)?

What does this mean? / thought SSH was secure?

Are you really the SSH server I'm looking for?

As we've seen, when SSH establishes a secure channel, a Diffie-Hellman asymmetric key
exchange will occur to agree on a secret symmetric encryption key. To secure this
exchange, the server will perform an asymmetric digital signature so that no attacker can

impersonate the server.

To verify the signature, your SSH client will ask the server for its public key. This is where
a man-in-the-middle attack is possible. SSH warns you that someone is sending you a
public key, but it has no way of verifying whether it’s actually the server’s public key, or

whether it’s the public key of an attacker performing a man-in-the-middle attack.
Basically, SSH makes the following guarantee:

e Once you have established a secure channel to a given server, no third party can
decrypt your communications. Forward secrecy is also guaranteed in the event your

credentials are compromised in the future.
SSH does not guarantee that:

* You are connecting to the correct server. You may be connecting to an attacker’s

server.

How can | solve this problem?

If you are using SSH to transmit sensitive data, you should check that the server’s public

key is the correct one before connecting.

One way to do this is to use the key fingerprint that is shown to you when first

ECDSA key fingerprint is SHA256:colYVucS/YU@QISK7woilLAf5ChPgJYAR1IBWI1ET2EwWDI=

Some services that allow you to connect over SSH, like GitHub, publish their SSH key

fingerprints on their website so that users may check them. In other cases, the key may be

physically transmitted to you, or dictated over the phone.

You should check that both fingerprints match before proceeding with the connection. If
it does not, either you typed the wrong server address, or an attacker may be trying to

hack your connection.

Known hosts file

If you accept the connection, SSH will save the server’s address and public key in its

known hosts file. You can see the contents of this file with the following command:

$> cat ~/.ssh/known_hosts

example.com,192.168.50.4 ecdsa-sha2-nistp256 eTJtK2wrRzhW5RQzUHprbFla...

The format of each line in this file is [domain], [ipaddr] algorithm pubkey .

The line above means that when SSH connects to - example.com at |IP address
192.168.50.4 , it expects the server to send this specific public key
(eTJtK2wrRzhW5RQzUHprbFJa...) using the ECDSA algorithm.

Wl More information

ECDSA is another asymmetric algorithm like RSA, although ECDSA is based on

https://en.wikipedia.org/wiki/Cryptographic_hash_function
https://docs.github.com/en/github/authenticating-to-github/githubs-ssh-key-fingerprints
https://docs.github.com/en/github/authenticating-to-github/githubs-ssh-key-fingerprints
https://en.wikipedia.org/wiki/Elliptic_Curve_Digital_Signature_Algorithm
https://en.wikipedia.org/wiki/Elliptic-curve_cryptography

Adding public keys to the known hosts file

Another solution to SSH man-in-the-middle attacks when first connecting is to put the

server’s public key in the known hosts file yourself.

If you have previously obtained the server’s public key (the full key, not just the

fingerprint), you can add it to the known hosts file before attempting to connect.

If you do that, SSH will consider that the server is already a known host, and will not

prompt you to accept the public key.

Preventing future man-in-the-middle attacks

The known hosts file has another purpose. Once SSH knows to expect a specific public

key for a given domain or IP address, it will warn you if that public key changes:

$> ssh 192.168.50.4
CEECECEEEEEEEECEEEEEEEEEEECEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE

@ WARNING: REMOTE HOST IDENTIFICATION HAS CHANGED! @
CEECEEEEEEEEECEEEEEEEEEEEEEEECEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE

IT IS POSSIBLE THAT SOMEONE IS DOING SOMETHING NASTY!

Someone could be eavesdropping on you right now (man-in-the-middle attack)!
It is also possible that a host key has just been changed.

The fingerprint for the ECDSA key sent by the remote host is

SHA256: FUwFoK/hcqRAvIgDFm1jwOur8t/mhfbm4tfIxdaVTQ==.

Please contact your system administrator.

Add correct host key in /path/to/.ssh/known_hosts to get rid of this message.
0ffending ECDSA key in /path/to/.ssh/known_hosts:33

ECDSA host key for 192.168.50.4 has changed and you have requested strict checkin

Host key verification failed.

As the message mentions, either the server changed its SSH key pair, or an attacker may

be intercepting your communications.

If you're sure it’s not an attack, for example if you know the server actually changed its

key pair, you can eliminate this warning by putting the correct public key in the known

hosts file (or by removing the offending line).

Password authentication

Establishing a secure channel is one thing, but that only ensures an attacker cannot
intercept communications. Once the channel is established, you must still authenticate,

i.e. prove that you are in fact the user you are attempting to log in as.

How you authenticate depends on how the SSH server is configured. Password
authentication is one method. When enabled, the SSH server will prompt you for the
correct password; in this example, the password of the user named ' jde ' in the server’s

user database:

$> ssh jde@192.168.50.4

The authenticity of host '192.168.50.4 (192.168.50.4)' can't be established.
ECDSA key fingerprint is SHA256:E4GYJCEoz+G5wv+EdkPyRLytgP7aTj9BS91r1d38Xg==.
Are you sure you want to continue connecting (yes/no)? yes

Warning: Permanently added '192.168.50.4' (ECDSA) to the list of known hosts.

jde@192.168.50.4's password:

© Tip
Most SSH clients will not display anything while you type your password. Simply

press Enter when youre done to submit it.

Logging in with SSH

If you run the ' ssh command with no extra arguments and authenticate with your

password, SSH will run the default shell configured for that user, typically Bash on Linux

https://en.wikipedia.org/wiki/Shell_(computing)
https://en.wikipedia.org/wiki/Bash_(Unix_shell)

servers:

$> ssh jde@192.168.50.4
jde@192.168.50.4's password:
Welcome to Ubuntu 18.04.1 LTS (GNU/Linux 4.15.0-33-generic x86_64)

System information as of Wed Oct 21 04:29:00 UTC 2015

©V Tip
Note that you may have a different command line prompt once you are connected, in

this example ' $ instead of @ $> .

Typing commands while connected through SSH

You are now connected to a Bash shell running on the server. Anything you type is
encrypted through SSH’s secure channel and interpreted by that shell. Any data that Bash

outputs is also encrypted, sent back through the channel and displayed in your terminal.

Your Computer Remote Computer

Terminal

Network / Internet

Secure channel

OS Kernel

Disconnecting

Disconnect with the command ' exit (or with ' Ctr1-D Hon Linux or macOS). You should

be back to the shell running on your local computer, with your usual prompt:

$ exit

Connection to 192.168.50.4 closed.

$>

Where am I?

Sometimes, you might forget what shell your terminal is connected to. Is it a shell on your

local machine or one running on the server?

If you're not sure, the - hostname command may help you. It prints the network name of

the current machine:

$> hostname

MyComputer. local

$> ssh jde@192.168.50.4
jde@192.168.50.4's password:

$ hostname

example.com

In this example, the local computer is named | MyComputer. local , while the server is

named example.com .

As you can see, the - hostname command returns different results before and after
connecting to the server with SSH, because it’s running on your local machine the first

time, but is running on the server the second time.

Logging in or running a command

When you execute ' ssh with the ' [command] @ option, it will execute the command and

close the connection as soon as that command is done.

Run this from your local shell:

$> hostname

MyComputer. local

$> ssh jde@192.168.50.4 echo Hello World
Hello World

$> hostname

MyComputer. local

As you can see, you are still in your local shell. The connection was closed as soon as the

echo command completed.

Public key authentication

Password authentication works, but it has some drawbacks:

e Attackers may try to brute force your password.

e |f an attacker succeeds in performing a man-in-the-middle attack (for example if you
forget to check the public key the first time you connect), he may steal your

password.

e [f the server is compromised, an attacker may modify the SSH server to steal your

password.

https://en.wikipedia.org/wiki/Brute-force_attack

As explained earlier, SSH uses asymmetric cryptography (@among other techniques) to
establish its secure channel. It’s also possible to use asymmetric cryptography to

authenticate.

How does it work?

If you have a private-public key pair, you can give your public key to the server. Using your

private key, your SSH client can prove to the SSH server that you are the owner of that

public key.
This has advantages over password authentication:

e |t’s virtually impossible to brute-force (it is larger and probably has much more

entropy than your password).

* Your private key will not be compromised by a man-in-the-middle attack or if the
server is compromised, as it is never transmitted to the server, only used to solve

mathematical problems based on the public key.

Warning

Note that public key authentication is only as secure as the file containing your
private key. If you publish that file anywhere or allow your local machine to be
compromised, the attacker will be able to impersonate you on any server or service

where you put your public key.

How does public key authentication work?

To authenticate you, the server will need your public key. That way, you will be able to

prove, using your private key, that you are the owner of that public key.

https://en.wikipedia.org/wiki/Brute-force_attack
https://en.wikipedia.org/wiki/Password_strength#Entropy_as_a_measure_of_password_strength

e A
A Remember, your private key MUST remain private (i.e.the id_ed25519 file).

You should never give it to any person, server or web service. Only give your

public key (i.e.the id_ed25519.pub file).

Using multiple keys
You may have multiple key pairs.

Some key pairs may have been generated by other programs or web services. For
example, some Git user interfaces generate a key pair to access GitHub, or Amazon Web
Services’s Elastic Compute Cloud (EC2) generates key pairs to give you access to their

virtual machines.

Having multiple key pairs may be part of a security strategy to limit the access an attacker

might gain if one of them is compromised.

To generate a key with a custom name, use the ' —f (file) option when generating the key
with the | ssh—-keygen ' command. To use a specific key pair, use the ' ssh command’s | -

i (identity) option, which allows you to choose the private key file you want to use:

$> ssh-keygen —f custom_key
$> ssh —-i ~/.ssh/custom_key jde@192.168.50.4

(O Note

It is the private key file you want to use with the ' —i option, not the public key, as
the private key is the one your SSH client will use to prove that it owns the public

key.

Key management

A few tips on managing your key pairs:

You may disseminate your public key freely to authenticate to other computers or

services.
NEVER give your private key to anyone.

Conversely, you may copy your private key to another computer of yours if you want it

to have the same access to other computers or services.

Back up your private and public key files (id_rsa and id_rsa.pub) to avoid
having to regenerate a pair if you lose your computer or switch to another computer.
(If you create a new key pair, you will have to replace the old public key with the new

one everywhere you used it.)

Use the ssh-copy-id _command to copy your public key to other computers to use

public key authentication instead of password authentication.

You will see how to do that in the SSH exercises.

For web services using public key authentication (e.g. GitHub), you usually have to
manually copy the public key file’s contents (id_rsa.pub) and provide it to them

in your account’s settings.

Key protection

It's good practice to protect your private key with a passphrase. You can enter a

passphrase when generating your key pair with the ' ssh-keygen ' command. You can

also add a passphrase to an existing key later.

Without a passphrase, anyone who gains access to your computer has the potential
to copy your private key. For example, family members, coworkers, system

administrators and hostile actors could gain access.

The downside to using a passphrase is that you need to enter it every time you use
SSH. You can temporarily cache your passphrase using ssh-agent so you don’t have to

enter it every time you connect.

https://www.ssh.com/academy/ssh/copy-id
https://learn.microsoft.com/en-us/azure/devops/repos/git/gcm-ssh-passphrase?view=azure-devops
https://learn.microsoft.com/en-us/azure/devops/repos/git/gcm-ssh-passphrase?view=azure-devops
https://docs.github.com/en/authentication/connecting-to-github-with-ssh/working-with-ssh-key-passphrases
https://www.cyberciti.biz/faq/how-to-use-ssh-agent-for-authentication-on-linux-unix/

ésh-agent \

encrypted key plaintext key

—
ask passphrase |

and decrypt _ I J

* If a private key is compromised (e.g. your computer is hacked or stolen), you should
remove the corresponding public key from computers and web services you have

copied it to.

SSH for other network services

As mentioned initially, SSH is a network protocol. It can be used not only for command

line login, but to secure other network services.

A few examples are:

e Secure Copy (scp)-A means of securely transferring computer files between a

local and remote host.

e rsync - Utility for efficiently transferring and synchronizing files across computer

systems.

e SSH File Transfer Protocol (SFTP) - Network protocol that provides file access, file

transfer and file management.

e Git - Version control system that can use SSH (among other protocols) to transfer

versioned data.

https://en.wikipedia.org/wiki/Secure_copy
https://en.wikipedia.org/wiki/Rsync
https://en.wikipedia.org/wiki/SSH_File_Transfer_Protocol
https://git-scm.com/

The birth (or death) of an SSH connection

THE BIRTH (OR DEATH) OF AN SSH CONNECTION

SSH CLIENT | SSH SERVER

ssh jde@archidep.ch l when user jde connects
c
£ |
E Negotiate with the server [Negotiate with the client
8 which cipher will be used v which cipher will be used
|
3 Perform signed Diffie- 1 Perform signed Diffie-
Hellman key exchange] Hellman key exchange
" Is the public key sent by the | e |
server the same as inthe + Is there a previously known public . &
/.;sh/krjlpwrjv,hgs@ file? key forarchidep.chinthe ! l
Close the connection J«—n0 .—yes ! J o] Send the server's public | . /i ssh_host_edz5519_key. pub
: P 4 key to the client /atc/ssh/ssh_host_rsa_key pub
yes I Legend
Warn the user that host authenticity | Start/end state
cannot be established & ask whether I
to continue (yes/no)
| |
w : Did the user | Manual input \i
¢ {_answer yes? | ol ———
2 & :
oS @ |: Decision?
£ [T no—»
8
g
£ yoo | By
3 i | '
§ Store the public key for 2 Private key ‘O Public key
[] archidep.chinthe l
~/.ssh/known_hosts file SSH connection flow
I Giient/server
I Network Boundary = emm ems e -

Send a random message
Receive an encrypted
to the server encrypted [------------------ I»
with the server's public key message from the client

|

id the server send the correctly |
decrypted message back? |

Server s an impostor

no

fetc/ssh/ssh_host_ed25519_key
fetc/ssh/ssh_host_rsa_key ..

-1 server’s private key and send it

Decrypt the message with the)
back to the client

b4 ¢ Does the server support
«public key authentication? H

fetc/ssh/sshd_config

Send the list of supported
authentication methods to
e client

I8 there a private and public key pair | "
(0.9.~/.ssh/id edz5519 and | ¥
~/.ssh/id_ed25519.pub)?

no

i""ls the public key sentby the |
' clientin the /home/ jde/.ssh/ |
authorized_keys file?

Client is an impostc

yes

i

Send the public key t¢

server) * 7777777777777777777777 b

yos
b

Send a random message
-1to the client encrypted with
the client’s public key

Receive an encrypted la
message from the server

|
|
|
|
ey g, |
|
|
|
|
|

Client Public Key Authentication

~/.ssh/id_ed25519) |
_ password-protected?

Prompt the user to enter
the password to decrypt
the private key

id the client send the correctly :
decrypted message back?

Client is an impostor

! Is the password
correct?

Decrypt the message with
yes—| the private key and send it ------------------g----oooomooooooooooooo -
back to the server I

Is another : Does the server support : is ge
authentication ; no ; password authentication?

method

supported? .

yes
'

Prompt the user to enter
the password for user jde
on the server

 the hash stored in /etc/ |
shadow for user jde?

Client Password Authentication

Send the plaintext
password to the server for
user jde on the server

no

Client is genuine

yes

l | : Does the password match

e PDF version

e PNG version

References

e How does SSH Work

e Demystifying Symmetric and Asymmetric Methods of Encryption

e Understanding the SSH Encryption and Connection Process

e Diffie-Hellman Key Exchange

e SSH, The Secure Shell: The Definitive Guide

e SSH Authentication Sequence and Key Files

T Backto top

https://archidep.ch/course/104-ssh/images/ssh-connection.pdf
https://archidep.ch/course/104-ssh/images/ssh-connection.png
https://www.hostinger.com/tutorials/ssh-tutorial-how-does-ssh-work
https://www.cheapsslshop.com/blog/demystifying-symmetric-and-asymmetric-methods-of-encryption
https://www.digitalocean.com/community/tutorials/understanding-the-ssh-encryption-and-connection-process
https://en.wikipedia.org/wiki/Diffie%E2%80%93Hellman_key_exchange
https://www.onebigfluke.com/2013/11/public-key-crypto-math-explained.html
https://books.google.ch/books/about/SSH_The_Secure_Shell_The_Definitive_Guid.html?id=9FSaScltd-kC&redir_esc=y
https://serverfault.com/a/935667

