
Architecture & Deployment

2025-2026 v0.1.0 on branch main Rev: d1f684699a511826485586b2ea383cf021631add

Secure Shell (SSH)

Learn about the SSH cryptographic network protocol and how to use the SSH command

line tool to connect to other computers.

Presentation

The ssh command

SSH known hosts

Are you really the SSH server I’m looking for?

How can I solve this problem?

Known hosts file

Adding public keys to the known hosts file

Preventing future man-in-the-middle attacks

Password authentication

Logging in with SSH

Typing commands while connected through SSH

Disconnecting

Where am I?

Logging in or running a command

Public key authentication

How does it work?

How does public key authentication work?

Using multiple keys

Key management

Key protection

SSH for other network services

The birth (or death) of an SSH connection

References

Table of contents

https://archidep.ch/
https://github.com/ArchiDep/website/tree/main
https://github.com/ArchiDep/website/blob/d1f684699a511826485586b2ea383cf021631add/course/collections/_course/104-ssh/subject.md

You will need

A Unix CLI

Recommended reading

Command Line Introduction

The ssh command

The ssh command is available on most Unix-like systems (e.g. Linux & macOS) and in

Unix shells on Windows (e.g. Git Bash or WSL). Its basic syntax is:

ssh [user@]hostname [command]

Here’s a few examples:

ssh example.com - Connect to the SSH server at example.com and log in (with

the same username as in your current shell).

ssh jde@example.com - Connect to the SSH server at example.com and log in

as user jde .

ssh jde@192.168.50.4 hostname - Run the hostname command as user

jde on the SSH server at 192.168.50.4 .

Run man ssh to see available options (or just ssh in Git Bash).

SSH known hosts

When you connect to an SSH server for the first time, you will most likely get a message

similar to this:

https://archidep.ch/course/cli/

$> ssh example.com

The authenticity of host 'example.com (192.168.50.4)' can't be established.

ECDSA key fingerprint is SHA256:colYVucS/YU0JSK7woiLAf5ChPgJYAR1BWJlET2EwDI=

Are you sure you want to continue connecting (yes/no)?

What does this mean? I thought SSH was secure?

Are you really the SSH server I’m looking for?

As we’ve seen, when SSH establishes a secure channel, a Diffie-Hellman asymmetric key

exchange will occur to agree on a secret symmetric encryption key. To secure this

exchange, the server will perform an asymmetric digital signature so that no attacker can

impersonate the server.

To verify the signature, your SSH client will ask the server for its public key. This is where

a man-in-the-middle attack is possible. SSH warns you that someone is sending you a

public key, but it has no way of verifying whether it’s actually the server’s public key, or

whether it’s the public key of an attacker performing a man-in-the-middle attack.

Basically, SSH makes the following guarantee:

Once you have established a secure channel to a given server, no third party can

decrypt your communications. Forward secrecy is also guaranteed in the event your

credentials are compromised in the future.

SSH does not guarantee that:

You are connecting to the correct server. You may be connecting to an attacker’s

server.

How can I solve this problem?

If you are using SSH to transmit sensitive data, you should check that the server’s public

key is the correct one before connecting.

One way to do this is to use the key fingerprint that is shown to you when first

connecting. The key fingerprint is a cryptographic hash of the public key:

ECDSA key fingerprint is SHA256:colYVucS/YU0JSK7woiLAf5ChPgJYAR1BWJlET2EwDI=

Some services that allow you to connect over SSH, like GitHub, publish their SSH key

fingerprints on their website so that users may check them. In other cases, the key may be

physically transmitted to you, or dictated over the phone.

You should check that both fingerprints match before proceeding with the connection. If

it does not, either you typed the wrong server address, or an attacker may be trying to

hack your connection.

Known hosts file

If you accept the connection, SSH will save the server’s address and public key in its

known hosts file. You can see the contents of this file with the following command:

$> cat ~/.ssh/known_hosts

example.com,192.168.50.4 ecdsa-sha2-nistp256 eTJtK2wrRzhW5RQzUHprbFJa...

The format of each line in this file is [domain],[ipaddr] algorithm pubkey .

The line above means that when SSH connects to example.com at IP address

192.168.50.4 , it expects the server to send this specific public key

(eTJtK2wrRzhW5RQzUHprbFJa...) using the ECDSA algorithm.

More information

ECDSA is another asymmetric algorithm like RSA, although ECDSA is based on

elliptic curve cryptography while RSA is based on prime numbers.

https://en.wikipedia.org/wiki/Cryptographic_hash_function
https://docs.github.com/en/github/authenticating-to-github/githubs-ssh-key-fingerprints
https://docs.github.com/en/github/authenticating-to-github/githubs-ssh-key-fingerprints
https://en.wikipedia.org/wiki/Elliptic_Curve_Digital_Signature_Algorithm
https://en.wikipedia.org/wiki/Elliptic-curve_cryptography

Adding public keys to the known hosts file

Another solution to SSH man-in-the-middle attacks when first connecting is to put the

server’s public key in the known hosts file yourself.

If you have previously obtained the server’s public key (the full key, not just the

fingerprint), you can add it to the known hosts file before attempting to connect.

If you do that, SSH will consider that the server is already a known host, and will not

prompt you to accept the public key.

Preventing future man-in-the-middle attacks

The known hosts file has another purpose. Once SSH knows to expect a specific public

key for a given domain or IP address, it will warn you if that public key changes:

$> ssh 192.168.50.4

@@@

@ WARNING: REMOTE HOST IDENTIFICATION HAS CHANGED! @

@@@

IT IS POSSIBLE THAT SOMEONE IS DOING SOMETHING NASTY!

Someone could be eavesdropping on you right now (man-in-the-middle attack)!

It is also possible that a host key has just been changed.

The fingerprint for the ECDSA key sent by the remote host is

SHA256:FUwFoK/hcqRAvJgDFmljwOur8t/mhfbm4tfIxdaVTQ==.

Please contact your system administrator.

Add correct host key in /path/to/.ssh/known_hosts to get rid of this message.

Offending ECDSA key in /path/to/.ssh/known_hosts:33

ECDSA host key for 192.168.50.4 has changed and you have requested strict checking

Host key verification failed.

As the message mentions, either the server changed its SSH key pair, or an attacker may

be intercepting your communications.

If you’re sure it’s not an attack, for example if you know the server actually changed its

key pair, you can eliminate this warning by putting the correct public key in the known

hosts file (or by removing the offending line).

Password authentication

Establishing a secure channel is one thing, but that only ensures an attacker cannot

intercept communications. Once the channel is established, you must still authenticate,

i.e. prove that you are in fact the user you are attempting to log in as.

How you authenticate depends on how the SSH server is configured. Password

authentication is one method. When enabled, the SSH server will prompt you for the

correct password; in this example, the password of the user named jde in the server’s

user database:

$> ssh jde@192.168.50.4

The authenticity of host '192.168.50.4 (192.168.50.4)' can't be established.

ECDSA key fingerprint is SHA256:E4GYJCEoz+G5wv+EdkPyRLytgP7aTj9BS9lr1d38Xg==.

Are you sure you want to continue connecting (yes/no)? yes

Warning: Permanently added '192.168.50.4' (ECDSA) to the list of known hosts.

jde@192.168.50.4's password:

Tip

Most SSH clients will not display anything while you type your password. Simply

press Enter when you’re done to submit it.

Logging in with SSH

If you run the ssh command with no extra arguments and authenticate with your

password, SSH will run the default shell configured for that user, typically Bash on Linux

https://en.wikipedia.org/wiki/Shell_(computing)
https://en.wikipedia.org/wiki/Bash_(Unix_shell)

servers:

$> ssh jde@192.168.50.4

jde@192.168.50.4's password:

Welcome to Ubuntu 18.04.1 LTS (GNU/Linux 4.15.0-33-generic x86_64)

 System information as of Wed Oct 21 04:29:00 UTC 2015

 ...

$

Tip

Note that you may have a different command line prompt once you are connected, in

this example $ instead of $> .

Typing commands while connected through SSH

You are now connected to a Bash shell running on the server. Anything you type is

encrypted through SSH’s secure channel and interpreted by that shell. Any data that Bash

outputs is also encrypted, sent back through the channel and displayed in your terminal.

Disconnecting

Disconnect with the command exit (or with Ctrl-D on Linux or macOS). You should

be back to the shell running on your local computer, with your usual prompt:

$ exit

Connection to 192.168.50.4 closed.

$>

Where am I?

Sometimes, you might forget what shell your terminal is connected to. Is it a shell on your

local machine or one running on the server?

If you’re not sure, the hostname command may help you. It prints the network name of

the current machine:

$> hostname

MyComputer.local

$> ssh jde@192.168.50.4

jde@192.168.50.4's password:

$ hostname

example.com

In this example, the local computer is named MyComputer.local , while the server is

named example.com .

As you can see, the hostname command returns different results before and after

connecting to the server with SSH, because it’s running on your local machine the first

time, but is running on the server the second time.

Logging in or running a command

When you execute ssh with the [command] option, it will execute the command and

close the connection as soon as that command is done.

Run this from your local shell:

$> hostname

MyComputer.local

$> ssh jde@192.168.50.4 echo Hello World

Hello World

$> hostname

MyComputer.local

As you can see, you are still in your local shell. The connection was closed as soon as the

echo command completed.

Public key authentication

Password authentication works, but it has some drawbacks:

Attackers may try to brute force your password.

If an attacker succeeds in performing a man-in-the-middle attack (for example if you

forget to check the public key the first time you connect), he may steal your

password.

If the server is compromised, an attacker may modify the SSH server to steal your

password.

https://en.wikipedia.org/wiki/Brute-force_attack

As explained earlier, SSH uses asymmetric cryptography (among other techniques) to

establish its secure channel. It’s also possible to use asymmetric cryptography to

authenticate.

How does it work?

If you have a private-public key pair, you can give your public key to the server. Using your

private key, your SSH client can prove to the SSH server that you are the owner of that

public key.

This has advantages over password authentication:

It’s virtually impossible to brute-force (it is larger and probably has much more

entropy than your password).

Your private key will not be compromised by a man-in-the-middle attack or if the

server is compromised, as it is never transmitted to the server, only used to solve

mathematical problems based on the public key.

Warning

Note that public key authentication is only as secure as the file containing your

private key. If you publish that file anywhere or allow your local machine to be

compromised, the attacker will be able to impersonate you on any server or service

where you put your public key.

How does public key authentication work?

To authenticate you, the server will need your public key. That way, you will be able to

prove, using your private key, that you are the owner of that public key.

https://en.wikipedia.org/wiki/Brute-force_attack
https://en.wikipedia.org/wiki/Password_strength#Entropy_as_a_measure_of_password_strength

Using multiple keys

You may have multiple key pairs.

Some key pairs may have been generated by other programs or web services. For

example, some Git user interfaces generate a key pair to access GitHub, or Amazon Web

Services’s Elastic Compute Cloud (EC2) generates key pairs to give you access to their

virtual machines.

Having multiple key pairs may be part of a security strategy to limit the access an attacker

might gain if one of them is compromised.

To generate a key with a custom name, use the -f (file) option when generating the key

with the ssh-keygen command. To use a specific key pair, use the ssh command’s -

i (identity) option, which allows you to choose the private key file you want to use:

$> ssh-keygen -f custom_key

$> ssh -i ~/.ssh/custom_key jde@192.168.50.4

Note

It is the private key file you want to use with the -i option, not the public key, as

the private key is the one your SSH client will use to prove that it owns the public

key.

Key management

A few tips on managing your key pairs:

Remember, your private key MUST remain private (i.e. the id_ed25519 file).

You should never give it to any person, server or web service. Only give your

public key (i.e. the id_ed25519.pub file).

You may disseminate your public key freely to authenticate to other computers or

services.

NEVER give your private key to anyone.

Conversely, you may copy your private key to another computer of yours if you want it

to have the same access to other computers or services.

Back up your private and public key files (id_rsa and id_rsa.pub) to avoid

having to regenerate a pair if you lose your computer or switch to another computer.

(If you create a new key pair, you will have to replace the old public key with the new

one everywhere you used it.)

Use the ssh-copy-id command to copy your public key to other computers to use

public key authentication instead of password authentication.

You will see how to do that in the SSH exercises.

For web services using public key authentication (e.g. GitHub), you usually have to

manually copy the public key file’s contents (id_rsa.pub) and provide it to them

in your account’s settings.

Key protection

It’s good practice to protect your private key with a passphrase. You can enter a

passphrase when generating your key pair with the ssh-keygen command. You can

also add a passphrase to an existing key later.

Without a passphrase, anyone who gains access to your computer has the potential

to copy your private key. For example, family members, coworkers, system

administrators and hostile actors could gain access.

The downside to using a passphrase is that you need to enter it every time you use

SSH. You can temporarily cache your passphrase using ssh-agent so you don’t have to

enter it every time you connect.

https://www.ssh.com/academy/ssh/copy-id
https://learn.microsoft.com/en-us/azure/devops/repos/git/gcm-ssh-passphrase?view=azure-devops
https://learn.microsoft.com/en-us/azure/devops/repos/git/gcm-ssh-passphrase?view=azure-devops
https://docs.github.com/en/authentication/connecting-to-github-with-ssh/working-with-ssh-key-passphrases
https://www.cyberciti.biz/faq/how-to-use-ssh-agent-for-authentication-on-linux-unix/

If a private key is compromised (e.g. your computer is hacked or stolen), you should

remove the corresponding public key from computers and web services you have

copied it to.

SSH for other network services

As mentioned initially, SSH is a network protocol. It can be used not only for command

line login, but to secure other network services.

A few examples are:

Secure Copy (scp) - A means of securely transferring computer files between a

local and remote host.

rsync - Utility for efficiently transferring and synchronizing files across computer

systems.

SSH File Transfer Protocol (SFTP) - Network protocol that provides file access, file

transfer and file management.

Git - Version control system that can use SSH (among other protocols) to transfer

versioned data.

https://en.wikipedia.org/wiki/Secure_copy
https://en.wikipedia.org/wiki/Rsync
https://en.wikipedia.org/wiki/SSH_File_Transfer_Protocol
https://git-scm.com/

The birth (or death) of an SSH connection

PDF version

PNG version

References

How does SSH Work

Demystifying Symmetric and Asymmetric Methods of Encryption

Understanding the SSH Encryption and Connection Process

Diffie-Hellman Key Exchange

Simplest Explanation of the Math Behind Public Key Cryptography

SSH, The Secure Shell: The Definitive Guide

SSH Authentication Sequence and Key Files

Back to top

https://archidep.ch/course/104-ssh/images/ssh-connection.pdf
https://archidep.ch/course/104-ssh/images/ssh-connection.png
https://www.hostinger.com/tutorials/ssh-tutorial-how-does-ssh-work
https://www.cheapsslshop.com/blog/demystifying-symmetric-and-asymmetric-methods-of-encryption
https://www.digitalocean.com/community/tutorials/understanding-the-ssh-encryption-and-connection-process
https://en.wikipedia.org/wiki/Diffie%E2%80%93Hellman_key_exchange
https://www.onebigfluke.com/2013/11/public-key-crypto-math-explained.html
https://books.google.ch/books/about/SSH_The_Secure_Shell_The_Definitive_Guid.html?id=9FSaScltd-kC&redir_esc=y
https://serverfault.com/a/935667

