
Architecture & Deployment

2025-2026 v0.1.0 on branch main Rev: d1f684699a511826485586b2ea383cf021631add

Hello SSH

In this series of exercises, you will learn to use the ssh command to connect to a

remote server, and how to copy files to and from such a server using various tools.

Legend

Parts of this exercise are annotated with the following icons:

A task you MUST perform to complete the exercise

An optional step that you may perform to make sure that everything is working

correctly, or to set up additional tools that are not required but can help you

 Legend

 Connect to the exercise server

 Spot the difference

 Copy a file with the scp command

 Copy a file using the SFTP protocol

 Set up public key authentication

 Do I already have a key pair?

 Generate a private-public key pair

 Use ssh-copy-id to copy your public key to the server

 The authorized_keys file

 Configure your SFTP application to use public key authentication

 SSH agent

 What have I done?

Table of contents

https://archidep.ch/
https://github.com/ArchiDep/website/tree/main
https://github.com/ArchiDep/website/blob/d1f684699a511826485586b2ea383cf021631add/course/collections/_course/105-hello-ssh/exercise.md

The end of the exercise

The architecture of the software you ran or deployed during this exercise.

Troubleshooting tips: how to fix common problems you might encounter

Connect to the exercise server

An SSH exercise server has been prepared so that you can learn to use the ssh

command and other SSH-based tools. You should have received a username and

password for this course by email.

As we’ve seen, the basic syntax of the SSH command is as follows:

$> ssh <username>@<hostname>

To connect to the server:

Determine the SSH command to connect to the exercise server. Replace the

<username> placeholder by the username you received in your email, and the

<hostname> placeholder by ssh.archidep.ch .

Execute that command in your console.

Since you are probably connecting to this server for the first time, you should get the

initial SSH connection warning indicating that the authenticity of the host cannot be

established.

Before accepting, you should verify that the key fingerprint in the warning message

corresponds to one of the keys provided by the teacher.

Answering yes without checking the key fingerprint exposes you to a potential

man-in-the-middle attack. An attacker could make you connect to a

Enter or paste your password when prompted.

Tip

The password’s characters will not appear as you type or after pasting. This is a

feature, not a bug. Passwords are not displayed to make it harder for someone

looking over your shoulder to read them.

You should now be connected to the server. You should see a welcome banner giving you

some information about the server’s operating system, and the prompt should have

changed. Any command you type is now executed on the remote server.

Spot the difference

Run the following commands on the server:

hostname

whoami

Open another console and run these commands again. Since this is a fresh console, they

will be executed on your local machine this time. Observe the difference in output when

you are connected to the server or running the commands on your local machine.

Connected to an SSH server

compromised server and then intercept all traffic going through the SSH

connexion, including your password.

https://man7.org/linux/man-pages/man1/hostname.1.html
https://man7.org/linux/man-pages/man1/whoami.1.html

On your local machine

More information

The hostname command prints the network name of the computer you are

running it on. This is likely to be different on your local machine than on the SSH

exercise server.

Another interesting command to run to see the difference between your machine and the

server is the uname command. Try running it on the server and your machine. Read the

documentation and try some of its options to get more information about your machine

and the server.

Tip

If you want to quickly run a command on a remote server with SSH and immediately

disconnect, you can do so by providing more arguments to the SSH command:

$> ssh <username>@<hostname> [command]

https://linuxhint.com/linux-uname-command-tutorial/

For example, assuming your username is jde , open a new console and execute the

following commands:

$> ssh jde@ssh.archidep.ch hostname

ssh.archidep.ch

$> hostname

MyComputer.local

You can see from the output that the first command was run on the server, but that

you are no longer connected by the time you ran the second command.

Copy a file with the scp command

Disconnect from the server (with the exit command) or open a new console to run

commands on your local machine.

Create a simple text file (using the following command or with your favorite text editor):

$> echo World > hello.txt

All Unix systems have a cp (copy) command that copies a file locally. Try it now:

$> cp hello.txt hello2.txt

Observe that the file has been copied (either by listing the files in your console with the

following command, or simply by looking at the directory in your file explorer):

$> ls

hello.txt

https://linuxize.com/post/cp-command-in-linux/

hello2.txt

...

The scp (secure copy) command works in principle like the cp command, except that

it can copy files to and from other computers that have an SSH server running, using SSH

to transfer the files. It reuses part of the same syntax as the ssh command to connect

to an SSH server. Try running this command now (replacing jde with your username on

the SSH exercise server):

$> scp hello.txt jde@ssh.archidep.ch:hello.txt

hello.txt 100% 4 0.6KB/s 00:00

This command copies your local hello.txt file to the home directory of the jde

user account on the remote computer.

To check that the file has indeed been copied, connect to your server and use some of the

commands you have learned so far:

$> ssh jde@ssh.archidep.ch

$ ls

hello.txt

...

$ cat hello.txt

World

$ exit

You can also copy files from the remote computer to your local computer:

$> scp jde@ssh.archidep.ch:hello.txt hello3.txt

hello.txt 100% 4 5.7KB/s 00:00

https://linuxize.com/post/how-to-use-scp-command-to-securely-transfer-files/

$> cat hello3.txt

World

Tip

Here’s a few additional examples of how to use the scp command:

scp foo.txt jde@192.168.50.4:bar.txt

Copy the local file foo.txt to a file named bar.txt in jde ’s home

directory on the remote computer.

scp foo.txt jde@192.168.50.4:

Copy the file to jde ’s home directory with the same file name.

scp foo.txt jde@192.168.50.4:/tmp/foo.txt

Copy the file to the absolute path /tmp/foo.txt on the remote computer.

scp jde@192.168.50.4:foo.txt jsmith@192.168.50.5:bar.txt

Copy the file from one remote computer to another.

scp -r foo jde@192.168.50.4:foo

Recursively (the -r option) copy the contents of directory foo to the remote

computer (a recursive copy means that the directory and all its subdirectories

are copied).

https://en.wikipedia.org/wiki/Recursion

Copy a file using the SFTP protocol

SFTP is an alternative to the original FTP protocol to transfer files. Since FTP is insecure

(e.g. passwords are sent unencrypted), SFTP is an alternative that goes through SSH’s

secure channel and therefore poses fewer security risks.

Most modern FTP clients support SFTP. Here’s a couple:

FileZilla

WinSCP

Cyberduck

Many code editors also have SFTP support available through plugins.

Install one of these applications (or use your favorite SFTP application if you already have

one) and connect to the SSH exercise server. You will need to configure a connection with

the following information:

Protocol: SFTP

Host, hostname or server address: ssh.archidep.ch

Username: the username you received by email

Password: the password you received by email

Port: 22 (the standard SSH port)

Tip

How to use these parameters depends on which application you use. They may not

be named exactly like this.

For example, here’s how to do it with Cyberduck:

https://en.wikipedia.org/wiki/SSH_File_Transfer_Protocol
https://en.wikipedia.org/wiki/File_Transfer_Protocol
https://en.wikipedia.org/wiki/File_Transfer_Protocol#Security
https://filezilla-project.org/
https://winscp.net/
https://cyberduck.io/

Warning

When connecting for the first time, the application may issue the same initial

connection warning as when you connect using the command line. Be sure to check

the key fingerprint.

Once you have successfully connected to the server, copy another file to the server using

the SFTP application this time. These applications will usually allow you to drag-and-

drop files to and from the server. Play with it a bit and see what you can do.

Now you know another way to copy files over SSH.

Set up public key authentication

The goal of this step is to generate a public/private key pair on your machine and to

configure SSH to use public key authentication instead of password authentication on the

SSH exercise server.

This will improve security and avoid having to type your password on each SSH

connection.

Do I already have a key pair?

By default, SSH keys are stored in the .ssh directory in your home directory:

$> ls ~/.ssh

id_ed25519 id_ed25519.pub

If you have the id_ed25519 and id_ed25519.pub files, you’re good to go, since SSH

expects to find your main Ed25519 private key at ~/.ssh/id_ed25519 . You might also

have a default key pair using another algorithm, such as an ECDSA key pair with files

named id_ecdsa and id_ecdsa.pub , or an RSA key pair with files named id_rsa

and id_rsa.pub if your system has an older SSH client.

Tip

On Windows, you can toggle the display of hidden files in the View tab of the

explorer to access your .ssh directory manually.

On macOS, type open ~/.ssh in your Terminal or use the Cmd-Shift-.

shortcut to display hidden files.

On most Linux distributions, the file manager will have an option to show hidden

files under its menu.

If the directory doesn’t exist or is empty, you don’t have a key pair yet.

Note

You may have a key with a different name, e.g. github_rsa & github_rsa.pub ,

as it is sometimes generated by some software. You can use this key if you want, but

since it doesn’t have the default name, you will have to add a -i

~/.ssh/github_rsa option to all your SSH commands. Generating a new key with

the default name for command line use would probably be easier.

https://en.wikipedia.org/wiki/EdDSA
https://en.wikipedia.org/wiki/Elliptic_Curve_Digital_Signature_Algorithm
https://en.wikipedia.org/wiki/RSA_(cryptosystem)

Generate a private-public key pair

If you do not already have a key pair, you should generate one for the rest of the exercise

and the course. You will use the ssh-keygen command.

More information

The ssh-keygen command is usually installed along with SSH and can generate a

key pair for you. It will ask you a couple of questions about the key:

Where do you want to save it? Simply press enter to use the proposed default

location (~/.ssh/id_ed25519 for an Ed25519 key, ~/.ssh/id_rsa for an

RSA key, etc).

What password do you want to protect the key with? Enter a password or simply

press enter to use no password.

Simply running ssh-keygen with no arguments will ask you the required information

and generate a new key pair using your SSH client’s default algorithm:

$> ssh-keygen

Generating public/private ed25519 key pair.

Enter file in which to save the key (/home/jde/.ssh/id_ed25519):

Created directory '/home/jde/.ssh'.

Enter passphrase (empty for no passphrase):

Enter same passphrase again:

Your identification has been saved in /home/jde/.ssh/id_ed25519.

Your public key has been saved in /home/jde/.ssh/id_ed25519.pub.

The key fingerprint is:

SHA256:MmwL9n4KOUCuLoyvGJ7nWRDXjTSGAXO8AcCNVqmDJH0 jde@497820feb22a

The key's randomart image is:

🛠️ Perform this step on your local machine, not on the SSH exercise server.

+--[ED25519 256]--+

|.o===oo+ |

|.=.oE++ + |

|= oo .oo . |

|.= oo |

| +.o = S |

| . o.= + |

|= +.o |

|*o..o+ . |

|+*+o oo |

+----[SHA256]-----+

Tip

If you choose to enter a passphrase, you will not see anything in your terminal when

you type it. This is intentional, so that no one looking over your shoulder can read it.

You can verify that a key has indeed been created by listing the contents of the SSH

directory:

$> ls ~/.ssh

id_ed25519 id_ed25519.pub

Should I protect my key with a password?

If you enter no password, your key will be stored in the clear. This will be

convenient as you will not have to enter a password when you use it. However,

any malicious code you allow to run on your machine could easily steal it.

If your key is protected by a password, you can run an SSH agent to unlock it

only once per session instead of every time you use it.

https://kb.iu.edu/d/aeww

Use ssh-copy-id to copy your public key to the server

The ssh-copy-id command uses the same syntax as the ssh command to connect

to another computer (e.g. ssh-copy-id jde@example.com). Instead of opening a new

shell, however, it will copy your local public key(s) to your user account’s

authorized_keys file on the target computer.

Execute that command now (replacing jde with your username):

$> ssh-copy-id jde@ssh.archidep.ch

You will probably have to enter your password, so that ssh-copy-id can log in and

copy your key. But once that is done, SSH should switch to public key authentication and

you should not have to enter your password again to log in. SSH will use your private key

to authenticate you instead. (You may have to enter your private key’s password though, if

it is protected by one.)

More information

Once you have set up public key authentication for an SSH server, that server is in

posession of your public key. Your SSH client can then use your private key to prove

that you are the owner of this public key, using the mathematical relationship

between the two. Your private key is never sent to the server during this process.

Connect with the ssh command again to see public key authentication in action:

$> ssh jde@ssh.archidep.ch

If it worked, the connection should now open without asking for a password. Your user

account is still secured: authentication was performed transparently by your SSH client,

using your private key.

The authorized_keys file

Now that you are connected to the server, you can check that your public key was added

to your user’s authorized_keys file:

$> ls ~/.ssh

authorized_keys

$> cat ~/.ssh/authorized_keys

ssh-rsa AAAAB3NzaC1yc2EAA... example

When your SSH client connects to the SSH server, the server will look for your public key

(or keys) in this file and ask the SSH client to prove that it owns one of the keys (using the

corresponding private key which rests on your local machine) using asymmetric

cryptography.

The private key is never transmitted, and this new authentication process is transparent,

handled automatically for you by the SSH client and server, hence why you no longer

have to enter a password.

You can also create the authorized_keys file manually. Note that both the

file and its parent directory must have permissions that make it accessible only

to your user account, or the SSH server will refuse to use it for security reasons.

The following commands can set up the file on the target machine:

$> mkdir -p ~/.ssh && chmod 700 ~/.ssh

$> touch ~/.ssh/authorized_keys

$> chmod 600 ~/.ssh/authorized_keys

The chmod command changes the permission of files. We will learn more

about this command later on in the course.

https://linux.die.net/man/1/chmod

Configure your SFTP application to use public key
authentication

Most SFTP applications also support SSH public key authentication instead of password

authentication. Open the SFTP application you used earlier, find out how to replace your

password by public key authentication, and try it.

You can remove your password once you have selected your private key, since public key

authentication will be used instead of your password.

Tip

You will need to provide the SFTP application with the location of your private key.

The application will use the private key to prove that it owns the public key located

in the server’s authorized_keys file.

For example, Cyberduck allows you to select your default key file:

Tip

On macOS, depending on which application you use, you may not see hidden files

and directories (file names starting with a dot .) when browsing the file system.

Use the Cmd-Shift-. shortcut to display them.

On Windows, you can toggle the display of hidden files in the View tab of the

explorer.

On most Linux distributions, the file manager will have an option to show hidden

files under its menu.

SSH agent

If you use a private key that is password-protected, you lose part of the convenience of

public key authentication: you don’t have to enter a password to authenticate to the

server, but you still have to enter the key’s password to unlock it.

Tip

If you did not set a passphrase when generating your key, you can also add a

passphrase afterwards.

The ssh-agent command can help you there. It runs a helper program that will let you

unlock your private key(s) once, then use it multiple times without entering the password

again each time.

There are several ways to run an SSH agent:

How to use ssh-agent for authentication on Linux / Unix

Generating a new SSH key and adding it to the ssh-agent (GitHub)

Single sign-on using SSH

https://docs.github.com/en/authentication/connecting-to-github-with-ssh/working-with-ssh-key-passphrases
https://docs.github.com/en/authentication/connecting-to-github-with-ssh/working-with-ssh-key-passphrases
https://www.cyberciti.biz/faq/how-to-use-ssh-agent-for-authentication-on-linux-unix/
https://help.github.com/articles/generating-a-new-ssh-key-and-adding-it-to-the-ssh-agent/
https://www.ssh.com/ssh/agent

You may already have an SSH agent running. Run the ssh-add -l command

to list (-l) unlocked keys:

If you get an error message, it probably means that SSH agent is not

running, for example:

$> ssh-add -l

Could not open a connection to your authentication agent.

If it tells you that you have no identities, it means that SSH agent is

running but that you have not unlocked any keys yet:

$> ssh-add -l

The agent has no identities.

If SSH agent is not already running, follow one of the guides above or run an

agent and have it start a new shell for you:

$> ssh-agent bash

The advantage of this last technique is that the agent will automatically quit

when you exit the shell, which is good since it’s not necessarily a good idea to

keep an SSH agent running forever for security reasons.

Once you have your agent running, the associated ssh-add command will

take your default private key (e.g. ~/.ssh/id_ed25519) and prompt you for

your password to unlock it:

$> ssh-add

Enter passphrase for /Users/jde/.ssh/id_ed25519:

Identity added: /Users/jde/.ssh/id_ed25519 (...)

https://www.commandprompt.com/blog/security_considerations_while_using_ssh-agent/

What have I done?

You have learned to use the ssh command to connect to a remote server, and also to

use the SSH protocol through other tools such as scp or your favorite SFTP client to

copy files.

You have learned to configure and use public key authentication instead of the less

secure password-based authentication mechanism.

If you are more security-minded, you may have also learned to protect your private key

with a passphrase and to use SSH agent to make it more convenient to use SSH.

Back to top

The unlocked key is now kept in memory by the agent. The ssh command

(and other SSH-related commands like scp) will not prompt you for that key’s

password as long as the agent keeps running.

If you want to load another key than the default one, you can specify its path:

$> ssh-add /path/to/custom_id_ed25519

