
GIT
Architecture & Deployment

1ArchiDep 25-26 main@d1f6846

https://heig-vd.ch/
https://github.com/ArchiDep/website/blob/d1f684699a511826485586b2ea383cf021631add/course/collections/_course/201-git/slides/slides.md
https://archidep.ch/

WHAT IS GIT?
 is a originally

developed by Linus Torvalds to work on Linux.
Git version control system (VCS)

2

https://git-scm.com/
https://en.wikipedia.org/wiki/Version_control

Linus Torvals is the creator of Linux. He created Git to manage the source code of the Linux kernel, because the
alternatives were proprietary and did not support the kind of workflow he wanted to develop Linux with.

Speaker notes

DESIGN GOALS
Speed
Simple design
Strong support for non-linear development
Fully distributed
Able to handle large projects

3

The Linux is a large and complex piece of code, and it has thousands of contributors. A version control system was
needed that could handle thousands of parallel branches and handle a project of that size with speed and efficiency
(data size).

Speaker notes

WHAT IS A VERSION CONTROL SYSTEM?
A system that records changes to a file or set of files

over time so that you can recall specific versions
later.

4

WHAT CAN I DO WITH IT?
Revert files back to a previous state
Compare changes over time
See who last modified something
Recover if you screw things up
Collaborate as a distributed team

5

A SHORT HISTORY

6

LOCAL VERSION CONTROL SYSTEMS (1980S)

Easy to accidentally edit
the wrong files

Hard to collaborate on
different versions with
other people

7

Basically, you manually copy your files into other directories to keep old versions.

, first released in 1982, automates this process.

Speaker notes

Revision Control System (RCS)

https://en.wikipedia.org/wiki/Revision_Control_System

CENTRALIZED VERSION CONTROL SYSTEMS (1990S)
Fine-grained administrator control

Slow (many network operations)

Single point of failure

History can be lost without backups

8

Centralized version control systems are based on a single central server that keeps all the versioned files.

 and are such systems that were first released in 1990 and 2000,
respectively.

You could also consider storing your files in a shared Dropbox, Google Drive, etc. to be a kind of centralized version
control system. However, it doesn't have as many tools for consulting and manipulating the history of your project, or
to collaborate on source code.

Speaker notes

Concurrent Version Systems (CVS) Subversion (SVN)

https://en.wikipedia.org/wiki/Concurrent_Versions_System
https://subversion.apache.org/

DISTRIBUTED VERSION CONTROL SYSTEMS (2000+)
Each client has a full copy of
the project, so operations are
local and fast.

Basically any collaborative
workflow is possible.

Administrators still have
control over their servers (but
not collaborators' machines).

9

Systems such as and are distributed. This enables , since the
team can organize itself however it wants.

Clients fully mirror the repository, not just the latest snapshot. Because Git stores all versions of all files locally, most
Git operations are almost instantaneous and do not require a connection to a server:

Browsing the history
Checking a file's changes from a month ago
Committing

Git and Mercurial were first released in 2005.

Speaker notes

Git Mercurial various types of collaborative workflows

https://git-scm.com/
https://www.mercurial-scm.org/
https://git-scm.com/book/en/v2/Distributed-Git-Distributed-Workflows

GIT BASICS

10

SNAPSHOTS, NOT DIFFERENCES

Subversion Git

11

Unlike other version control systems, Git stores its data as snapshots instead of file-based changes. Git thinks of its
data like a set of snapshots of a miniature filesystem.

Every time you save the state of your project in Git, it basically takes a picture of what all your files look like at that
moment and stores a reference to that snapshot. To be efficient, if files have not changed, Git doesn't store the file
again, just a link to the previous identical file it has already stored. Git thinks about its data more like a stream of
snapshots.

Speaker notes

GIT HAS INTEGRITY
All Git objects are identified by a digest:

You will see them all over the place in Git. Often you
will only see a prefix (the first 6-7 characters):

SHA-1

24b9da6552252987aa493b52f8696cd6d3b00373

24b9da6

12

https://en.wikipedia.org/wiki/SHA-1

SHA-1 is a [hash function][cryptographic-hashfunction] and provides integrity. Because all content is , it's virtually
impossible for files to be lost or corrupted without Git knowing about it. This functionality is built into Git at the lowest
levels and is integral to its philosophy.

Speaker notes

hashed

https://en.wikipedia.org/wiki/Hash_function

WHAT'S IN A GIT PROJECT?
my-project: # the working directory
┣━━ .git: # the git directory
┃ ┣━━ HEAD
┃ ┣━━ config
┃ ┣━━ hooks
┃ ┣━━ index # the staging area
┃ ┣━━ objects
┃ ┗━━ ...
┣━━ file1.txt
┣━━ file2.txt
┗━━ dir:
 ┗━━ file3.txt

1
2
3
4
5
6
7
8
9

10
11
12

13

A Git project has three main parts:

The Git directory: this is where Git stores all the snapshots of the different versions of your files. This is the
most important part of Git, and it is what is copied when you clone a repository from another computer or a
server.

You should never modify any of the files in this directory yourself; you could easily corrupt the Git repository. It is
hidden by default, but you can see it on the command line.

The working directory: it contains the files you are currently working on; that is, one specific version of
your project. These files are pulled out of the compressed database in the Git directory and placed in your
project's directory for you to use or modify:

The staging area (also called the index), that stores information about what will go into the next commit (or
version).

Before file snapshots are committed in the Git directory, they must go through the staging area.

Speaker notes

WHAT'S IN A GIT PROJECT?
my-project: # the working directory
┣━━ .git: # the git directory
┃ ┣━━ HEAD
┃ ┣━━ config
┃ ┣━━ hooks
┃ ┣━━ index # the staging area
┃ ┣━━ objects
┃ ┗━━ ...
┣━━ file1.txt
┣━━ file2.txt
┗━━ dir:
 ┗━━ file3.txt

1
2
3
4
5
6
7
8
9

10
11
12

┣━━ .git: # the git directory
┃ ┣━━ HEAD
┃ ┣━━ config
┃ ┣━━ hooks

┃ ┣━━ objects
┃ ┗━━ ...

my-project: # the working directory1
2
3
4
5

┃ ┣━━ index # the staging area6
7
8

┣━━ file1.txt9
┣━━ file2.txt10
┗━━ dir:11
 ┗━━ file3.txt12

13.1

WHAT'S IN A GIT PROJECT?
my-project: # the working directory
┣━━ .git: # the git directory
┃ ┣━━ HEAD
┃ ┣━━ config
┃ ┣━━ hooks
┃ ┣━━ index # the staging area
┃ ┣━━ objects
┃ ┗━━ ...
┣━━ file1.txt
┣━━ file2.txt
┗━━ dir:
 ┗━━ file3.txt

1
2
3
4
5
6
7
8
9

10
11
12

┣━━ .git: # the git directory
┃ ┣━━ HEAD
┃ ┣━━ config
┃ ┣━━ hooks

┃ ┣━━ objects
┃ ┗━━ ...

my-project: # the working directory1
2
3
4
5

┃ ┣━━ index # the staging area6
7
8

┣━━ file1.txt9
┣━━ file2.txt10
┗━━ dir:11
 ┗━━ file3.txt12

my-project: # the working directory

┣━━ file1.txt
┣━━ file2.txt
┗━━ dir:
 ┗━━ file3.txt

1
┣━━ .git: # the git directory2
┃ ┣━━ HEAD3
┃ ┣━━ config4
┃ ┣━━ hooks5
┃ ┣━━ index # the staging area6
┃ ┣━━ objects7
┃ ┗━━ ...8

9
10
11
12

13.2

WHAT'S IN A GIT PROJECT?
my-project: # the working directory
┣━━ .git: # the git directory
┃ ┣━━ HEAD
┃ ┣━━ config
┃ ┣━━ hooks
┃ ┣━━ index # the staging area
┃ ┣━━ objects
┃ ┗━━ ...
┣━━ file1.txt
┣━━ file2.txt
┗━━ dir:
 ┗━━ file3.txt

1
2
3
4
5
6
7
8
9

10
11
12

┣━━ .git: # the git directory
┃ ┣━━ HEAD
┃ ┣━━ config
┃ ┣━━ hooks

┃ ┣━━ objects
┃ ┗━━ ...

my-project: # the working directory1
2
3
4
5

┃ ┣━━ index # the staging area6
7
8

┣━━ file1.txt9
┣━━ file2.txt10
┗━━ dir:11
 ┗━━ file3.txt12

my-project: # the working directory

┣━━ file1.txt
┣━━ file2.txt
┗━━ dir:
 ┗━━ file3.txt

1
┣━━ .git: # the git directory2
┃ ┣━━ HEAD3
┃ ┣━━ config4
┃ ┣━━ hooks5
┃ ┣━━ index # the staging area6
┃ ┣━━ objects7
┃ ┗━━ ...8

9
10
11
12

┃ ┣━━ index # the staging area

my-project: # the working directory1
┣━━ .git: # the git directory2
┃ ┣━━ HEAD3
┃ ┣━━ config4
┃ ┣━━ hooks5

6
┃ ┣━━ objects7
┃ ┗━━ ...8
┣━━ file1.txt9
┣━━ file2.txt10
┗━━ dir:11
 ┗━━ file3.txt12

13.3

THE BASIC GIT WORKFLOW

14

This is one of the most important things to remember about Git:

You check out (or switch to) a specific version of your files into the working directory.
You modify files (or add new files) in your working directory.
You stage the files, adding snapshots of them to your staging area.
You make a commit, which takes the files as they are in the staging area and stores these snapshots
permanently to your Git directory.

Speaker notes

USING THE STAGING AREA

15

New snapshots of files MUST go through the staging area to be committed into the Git directory.

Speaker notes

