HE"

IG

GlT

Architecture & Deployment

https://heig-vd.ch/
https://github.com/ArchiDep/website/blob/d1f684699a511826485586b2ea383cf021631add/course/collections/_course/201-git/slides/slides.md
https://archidep.ch/

WHAT IS GIT?

Git is a version control system (VCS) originally
developed by Linus Torvalds to work on Linux.

@ git

https://git-scm.com/
https://en.wikipedia.org/wiki/Version_control

Speaker notes

Linus Torvals is the creator of Linux. He created Git to manage the source code of the Linux kernel, because the
alternatives were proprietary and did not support the kind of workflow he wanted to develop Linux with.

DESIGN GOALS

e Speed

e Simple design

e Strong support for non-linear development
e Fully distributed

 Able to handle large projects

Speaker notes

The Linux is a large and complex piece of code, and it has thousands of contributors. A version control system was
needed that could handle thousands of parallel branches and handle a project of that size with speed and efficiency
(data size).

WHAT IS A VERSION CONTROL SYSTEM?

A system that records changes to a file or set of files
over time so that you can recall specific versions
later.

—olel e\,

WHAT CAN 1 DO WITH IT?

e Revert files back to a previous state
e Compare changes over time

* See who last modified something

e Recover if you screw things up

e Collaborate as a distributed team

A SHORT HISTORY

LOCAL VERSION CONTROL SYSTEMS (1980S)

e Easy to accidentally edit Lozl ey

the Wrong ﬁ Ies Checkout Version Database

e Hard to collaborate on
different versions with
other people

Basically, you manually copy your files into other directories to keep old versions.

Revision Control System (RCS), first released in 1982, automates this process.

https://en.wikipedia.org/wiki/Revision_Control_System

CENTRALIZED VERSION CONTROL SYSTEMS (1990S)

* Fine-grained administrator control Computer A Central VCS Server

e Slow (many network operations) G-

e Single point of failure

e History can be lost without backups -

Centralized version control systems are based on a single central server that keeps all the versioned files.

Concurrent Version Systems (CVS) and Subversion (SVN) are such systems that were first released in 1990 and 2000,
respectively.

You could also consider storing your files in a shared Dropbox, Google Drive, etc. to be a kind of centralized version
control system. However, it doesn't have as many tools for consulting and manipulating the history of your project, or
to collaborate on source code.

https://en.wikipedia.org/wiki/Concurrent_Versions_System
https://subversion.apache.org/

DISTRIBUTED VERSION CONTROL SYSTEMS (2000+)

e Each client has a full copy of
the project, so operations are
local and fast.

e Basically any collaborative
workflow is possible.

e Administrators still have
control over their servers (but
not collaborators' machines).

aaaaaaaaaaa

cccccccc

cccccccc

Systems such as Git and Mercurial are distributed. This enables various types of collaborative workflows, since the
team can organize itself however it wants.

Clients fully mirror the repository, not just the latest snapshot. Because Git stores all versions of all files locally, most
Git operations are almost instantaneous and do not require a connection to a server:

e Browsing the history
e Checking a file's changes from a month ago
o Committing

Git and Mercurial were first released in 2005.

https://git-scm.com/
https://www.mercurial-scm.org/
https://git-scm.com/book/en/v2/Distributed-Git-Distributed-Workflows

GIT BASICS

SNAPSHOTS, NOT DIFFERENCES

Checkins Over Time o Checkins Over Time
File A —» A1 - A2 File A Al A2
File B > N . File B B LB Bl
File C —» Al — A2 > A3 File C c1 () : 2 ; 3

Subversion Git

Unlike other version control systems, Git stores its data as snapshots instead of file-based changes. Git thinks of its
data like a set of snapshots of a miniature filesystem.

Every time you save the state of your project in Git, it basically takes a picture of what all your files look like at that
moment and stores a reference to that snapshot. To be efficient, if files have not changed, Git doesn't store the file
again, just a link to the previous identical file it has already stored. Git thinks about its data more like a stream of
snapshots.

GIT HAS INTEGRITY

All Git objects are identified by a SHA-1 digest:

24b9da6552252987aa493b5218696cd6d3b00373

You will see them all over the place in Git. Often you
will only see a prefix (the first 6-7 characters):

24b9dab

https://en.wikipedia.org/wiki/SHA-1

Speaker notes

SHA-1 is a [hash function][cryptographic-hashfunction] and provides integrity. Because all content is hashed, it's virtually
impossible for files to be lost or corrupted without Git knowing about it. This functionality is built into Git at the lowest
levels and is integral to its philosophy.

https://en.wikipedia.org/wiki/Hash_function

WHAT'S IN A GIT PROJECT?

my—-project:
.git:
HEAD
config
hooks
index
objects

1
2
3
4
5
§)
/
38
)

filel.txt
file2.txt
dir:

L— file3.txt

[S
NR

A Git project has three main parts:

» The Git directory: this is where Git stores all the snapshots of the different versions of your files. This is the
most important part of Git, and it is what is copied when you clone a repository from another computer or a
server.

You should never modify any of the files in this directory yourself; you could easily corrupt the Git repository. It is
hidden by default, but you can see it on the command line.

« The working directory: it contains the files you are currently working on; that is, one specific version of
your project. These files are pulled out of the compressed database in the Git directory and placed in your
project's directory for you to use or modify:

o The staging area (also called the index), that stores information about what will go into the next commit (or
version).

Before file snapshots are committed in the Git directory, they must go through the staging area.

WHAT'S IN A GIT PROJECT?

WHAT'S IN A GIT PROJECT?

1 my-project:

filel.txt
file2.txt
dir:

L— file3.txt

WHAT'S IN A GIT PROJECT?

THE BASIC GIT WORKFLOW

Working .git directory
Directory (Repository)

Checkout the project

Stage Fixes

(4

Modify

Commit

This is one of the most important things to remember about Git:

You check out (or switch to) a specific version of your files into the working directory.

You modify files (or add new files) in your working directory.

You stage the files, adding snapshots of them to your staging area.

You make a commit, which takes the files as they are in the staging area and stores these snapshots
permanently to your Git directory.

USING THE STAGING AREA

New snapshots of files MUST go through the staging area io be committed into the Git directory.

