
Architecture & Deployment

2025-2026 v0.1.0 on branch main Rev: d1f684699a511826485586b2ea383cf021631add

Version Control with Git

Learn the basics of Git, one of the most popular distributed version control systems. This

is a condensed version of the first chapters of the Git Book, which you should read if you

want more detailed information on the subject.

Presentation

Getting started

Git and the command line

Installing Git

First-time Git setup

Choosing a default branch name

Creating a new repository

Checking the status of your files

Adding new files

Tracking new files

Checking staged changes

Committing your changes

Modifying files

Staging modified files

Modifying a staged file

Checking staged and unstaged changes

Staging area versus working directory

Committing partially staged changes

Moving and removing files

Adding all changes

Viewing the commit history

Viewing the changes in the history

Other log options

Table of contents

https://archidep.ch/
https://github.com/ArchiDep/website/tree/main
https://github.com/ArchiDep/website/blob/d1f684699a511826485586b2ea383cf021631add/course/collections/_course/201-git/subject.md
https://git-scm.com/
https://git-scm.com/book/en/v2

You will need

A Unix CLI

Recommended reading

Command line

Getting started

This is a tutorial where you will learn how to:

Configure Git for the first time

Create a new repository

Check the status of your files

Track new files

Stage and commit modified files

Move and remove files

Ignoring files

Committing the ignore file

Status of ignored files

Global ignore file

Undoing things

Unmodifying a modified file

Unstaging a staged file

Changing the commit message

Adding changes to a commit

Best practices

https://archidep.ch/course/101-command-line/

Ignore files

Git and the command line

There are a lot of different ways to use Git: the original command line tools and various

GUIs of varying capabilities. But the command line is the only place you can run all Git

commands with all their options.

If you know how to run the command line version, you can easily figure out how to use

the GUI version, while the opposite is not necessarily true. So the command line is what

we will use.

Some of you may already have Git installed. Run the following command in your CLI to

make sure:

$> git --version

git version 2.46.0

Installing Git

On macOS, Git may already be installed. If not, it is part of the command-line tools, which

you can install by running the following command:

$> xcode-select --install

On Windows under the Windows Subsystem for Linux (WSL), or on Linux, Git may already

be installed. If not, you can install it using your distribution’s package manager, for

example on APT-based systems:

$> sudo apt install git-all

Otherwise, follow the official installation instructions.

https://git-scm.com/book/en/v2/Getting-Started-Installing-Git

First-time Git setup

Now that you have Git, you must configure your identity: your user name and e-mail

address. This is important because every Git commit uses this information, and it’s

immutably baked into every commit you make.

Use the git config command to do this:

$> git config --global user.name "John Doe"

$> git config --global user.email john.doe@example.com

You can also run the command with the --list option to check that the settings were

successfully applied:

$> git config --list

user.name=John Doe

user.email=john.doe@example.com

More information

With the --global option, Git will store these settings in your user configuration

file (~/.gitconfig), so you only need to do this once on any given computer. You

can also change them at any time by running the commands again. Run cat

~/.gitconfig to display this file.

Choosing a default branch name

You should also configure a default branch name, like main , for all your repositories:

$> git config --global init.defaultBranch main

We will talk more about branches later. If you don’t perform this configuration now, you

may see this warning when creating your first repository:

$> git init

hint: Using 'master' as the name for the initial branch. This default branch name

hint: is subject to change. To configure the initial branch name to use in all

hint: of your new repositories, which will suppress this warning, call:

hint:

hint: git config --global init.defaultBranch <name>

hint:

hint: Names commonly chosen instead of 'master' are 'main', 'trunk' and

hint: 'development'. The just-created branch can be renamed via this command:

hint:

hint: git branch -m <name>

Creating a new repository

Let’s get started by creating a directory for our new project:

$> cd /path/to/projects

$> mkdir hello-project

Go into the directory and run git init to create a Git repository:

$> cd hello-project

$> git init

Initialized empty Git repository in /path/to/projects/hello-project

This creates a Git directory (.git) with an empty object database. At this point, nothing

in your project is tracked yet.

Checking the status of your files

The main tool you use to determine which files are in which state is the git status

command. If you run it in the repo you just created, you should see something like this:

$> git status

On branch main

Initial commit

nothing to commit (create/copy files and use "git add" to track)

This means you have an empty repo with no commits, and a clean working directory –

there is nothing there.

As you can see, Git often helps you by telling you what you can do next: you need to start

adding some files.

Tip

The git status command is your best friend when using Git. Do not hesitate to

use it at any time to check in what state you are.

Adding new files

In the project’s directory, write “Hello World” into a hello.txt file and “Hi Bob” into a

hi.txt file:

$> echo "Hello World" > hello.txt

$> echo "Hi Bob" > hi.txt

Re-run the git status command:

$> git status

On branch main

Initial commit

Untracked files:

 (use "git add <file>..." to include in what will be committed)

 hello.txt

 hi.txt

nothing added to commit but untracked files present (use "git add" to track)

Those files are untracked. Git will not include them in the repository unless you explicitly

tell it to do so.

Tracking new files

In order to begin tracking a new file, you must use the git add command:

$> git add hello.txt

$> git add hi.txt

$> git status

On branch main

Initial commit

Changes to be committed:

 (use "git rm --cached <file>..." to unstage)

 new file: hello.txt

 new file: hi.txt

The files are now staged: they will be in the next commit.

Tip

git add *.txt would have added all files with the .txt extension in one

command.

git add . would have added all the files in the current directory

(recursively).

Checking staged changes

Git can show you what you have staged:

$> git diff --staged

diff --git a/hello.txt b/`hello.txt`

new file mode 100644

index 0000000..557db03

--- /dev/null

+++ b/hello.txt

@@ -0,0 +1 @@

+Hello World

diff --git a/hi.txt b/`hi.txt`

new file mode 100644

index 0000000..e5db1d9

--- /dev/null

+++ b/hi.txt

@@ -0,0 +1 @@

+Hi Bob

It shows you each staged file and the changes in those files.

Committing your changes

Now that your staging area is set up the way you want it, you can commit your changes

with the git commit command. This command takes a --message or -m option

where you should put a short description of the changes you made:

$> git commit -m "Add hello and hi files"

[main (root-commit) `c90aa36`] Add hello and hi files

 2 files changed, 2 insertions(+)

 create mode 100644 hello.txt

 create mode 100644 hi.txt

Note that Git gives you the beginning of the new commit’s SHA-1 checksum (c90aa36

in this example, but it will be different on your machine) along with change statistics and

other information.

$> git status

On branch main

nothing to commit, working tree clean

Modifying files

Let’s make some changes. Add one line to both files:

echo "You are beautiful" >> hello.txt

echo "Hi Jane" >> hi.txt

And see what Git tells us:

$> git status

On branch main

Changes not staged for commit:

 (use "git add <file>..." to update what will be committed)

 (use "git restore <file>..." to discard changes in working directory)

 modified: hello.txt

 modified: hi.txt

no changes added to commit (use "git add" and/or "git commit -a")

Git has identified the modified files different from the last commit, but they are not

staged, meaning that if you try to commit now, those changes will not be committed.

Staging modified files

Stage the changes on the hello.txt file and check the status:

$> git add hello.txt

$> git status

On branch main

Changes to be committed:

 (use "git restore --staged <file>..." to unstage)

 modified: hello.txt

Changes not staged for commit:

 (use "git add <file>..." to update what will be committed)

 (use "git restore <file>..." to discard changes in working directory)

 modified: hi.txt

If you commit now, only the changes on hello.txt will be included in the snapshot,

while the changes in hi.txt will remain uncommitted.

Modifying a staged file

Before committing, let’s make another change to hello.txt and check the status:

$> echo "I see trees of green" >> hello.txt

$> git status

On branch main

Changes to be committed:

 (use "git restore --staged <file>..." to unstage)

 modified: hello.txt

Changes not staged for commit:

 (use "git add <file>..." to update what will be committed)

 (use "git restore <file>..." to discard changes in working directory)

 modified: hello.txt

 modified: hi.txt

hello.txt is shown both under “Changes to be committed” and “Changes not staged

for commit”. What does this mean?

Checking staged and unstaged changes

Use git diff with the --staged option to show staged changes.

$> git diff --staged

diff --git a/hello.txt b/hello.txt

index 557db03..2136a8e 100644

--- a/hello.txt

+++ b/hello.txt

@@ -1 +1,2 @@

 Hello World

+You are beautiful

You can also use it without the option to see unstaged changes.

$> git diff

diff --git a/hello.txt b/hello.txt

index 2136a8e..730ea5a 100644

--- a/hello.txt

+++ b/hello.txt

@@ -1,2 +1,3 @@

 Hello World

 You are beautiful

+I see trees of green

diff --git a/hi.txt b/hi.txt

index e5db1d9..f74a87a 100644

--- a/hi.txt

+++ b/hi.txt

@@ -1 +1,2 @@

 Hi Bob

+Hi Jane

Staging area versus working directory

This example shows you that the working directory and the staging area are really two

separate steps:

The version of hello.txt you have staged contains two lines of text (“Hello

World” and “You are beautiful”). This is what will be committed.

The version of hello.txt in the working directory has an additional line of text

(“I see trees of green”) which you added later. It will not be included in the next

commit unless you stage the file again.

Committing partially staged changes

Commit now:

$> git commit -m "The world is beautiful"

[main b65ec9c] The world is beautiful

 1 file changed, 1 insertion(+)

As expected, the changes we did not stage are still uncommitted.

$> git status

On branch main

Changes not staged for commit:

 (use "git add <file>..." to update what will be committed)

 (use "git restore <file>..." to discard changes in working directory)

 modified: hello.txt

 modified: hi.txt

no changes added to commit (use "git add" and/or "git commit -a")

Let’s fix that:

$> git add .

$> git commit -m "New lines in hello.txt and hi.txt"

[main dfc6c75] New lines in hello.txt and hi.txt

 2 files changed, 2 insertions(+)

Moving and removing files

Git has a git mv (move) and git rm (remove) command, but nobody uses them for

day-to-day work on files. It’s simpler to just move or remove the files yourself. Rename

hi.txt to people.txt in your editor or with this command:

$> mv hi.txt people.txt

More information

The mv (move) command moves a source file to a target path.

Then see what Git tells you:

$> git status

On branch main

Changes not staged for commit:

 (use "git add/rm <file>..." to update what will be committed)

 (use "git restore <file>..." to discard changes in working directory)

 deleted: hi.txt

Untracked files:

 (use "git add <file>..." to include in what will be committed)

 people.txt

no changes added to commit (use "git add" and/or "git commit -a")

Adding all changes

You can tell Git to add all changes (additions, modifications and removals):

$> git add .

$> git status

On branch main

Changes to be committed:

 (use "git restore --staged <file>..." to unstage)

https://en.wikipedia.org/wiki/Mv_(Unix)

 renamed: hi.txt -> people.txt

Note that Git can now tell that the file was moved.

Tip

Many developers simply modify and manipulate files in their favorite editor or IDE,

then use the command above.

You may commit the rename now:

$> git commit -m "Rename hi.txt to people.txt"

Viewing the commit history

Git has a very powerful log command:

$> git log

commit 739b7c8987d72879f79ac7979as8f9db790a82da

Author: John Doe <john.doe@example.com>

Date: Mon Jan 23 11:50:09 2017 +0100

 Rename hi.txt to people.txt

commit e753ceb86806b285aa105a846c7295e826439637

Author: John Doe <john.doe@example.com>

Date: Mon Jan 23 11:50:07 2017 +0100

 New lines in hello.txt and hi.txt

commit 4c56257f622c53f1ddeaf3d58b6729b01b35aedb

Author: John Doe <john.doe@example.com>

Date: Mon Jan 23 11:50:00 2017 +0100

 The world is beautiful

...

Viewing the changes in the history

With the --patch option, you can see that Git shows you the differences you

introduced in each commit:

$> git log --patch

commit e753ceb86806b285aa105a846c7295e826439637

Author: John Doe <john.doe@example.com>

Date: Mon Jan 23 11:50:07 2017 +0100

 New lines in hello.txt and hi.txt

diff --git a/hello.txt b/hello.txt

index 2136a8e..730ea5a 100644

--- a/hello.txt

+++ b/hello.txt

@@ -1,2 +1,3 @@

 Hello World

 You are beautiful

+I see trees of green

diff --git a/hi.txt b/hi.txt

index e5db1d9..f74a87a 100644

--- a/hi.txt

+++ b/hi.txt

@@ -1 +1,2 @@

 Hi Bob

+Hi Jane

Other log options

The git log has many options to customize its output or limit what commits it shows

you. Here are some other useful options:

Option Limit to

--stat Show the list of changed files

--pretty Show the commit history with a custom format

-(n) Only the last n commits

--after Only commits made after the specified date

--before Only commits made before the specified date

--author Only commits whose author matches the specified string

--grep Only commits with a commit message containing the string

-S Only commits adding or removing code matching the string

Use git help log or read the documentation to learn more.

Ignoring files

Sometimes there are files you don’t want to commit in your repository:

Log files

Dependencies

Build artifacts

You can tell Git not to track them by adding a .gitignore file to your repository.

Create it now with this content:

https://git-scm.com/docs/git-log#_pretty_formats
https://git-scm.com/book/en/v2/Git-Basics-Viewing-the-Commit-History

**.log

*node_modules

Committing the ignore file

Do not forget to stage and commit the .gitignore file:

$> git add .gitignore

$> git commit -m "Ignore file"

Tip

That way, when you start collaborating with the other developers in your team, the

same files will be ignored on their machine.

Status of ignored files

Ignored files are no longer shown when using git status :

$> echo data > app.log

$> git status

On branch main

nothing to commit, working tree clean

Global ignore file

There are some files you might want to always ignore for all projects on your machine.

For example, macOS creates .DS_Store files in directories you open in the Finder.

There is no reason to keep these files in your Git history, and they are useless on other

operating systems.

You can create a global ignore file in your home directory to ignore them:

$> echo ".DS_Store" >> ~/.gitignore

Run the following command to configure Git to use this file. You only have to do it once

on each machine:

$> git config --global core.excludesfile ~/.gitignore

.DS_Store files will no longer show up in your git status output, and they will

not be staged or committed.

Undoing things

There are several ways of undoing things with Git. We’ll review a few of the tools

available.

Unmodifying a modified file

Sometimes you make a change and you realize it was wrong or you don’t need it

anymore. Git actually tells you what to do to discard that change:

$> echo "Hi Steve" >> people.txt

$> git status

On branch main

Changes not staged for commit:

 (use "git add <file>..." to update what will be committed)

 `(use "git restore <file>..." to discard changes in working directory)`

Be careful: you can’t always undo some of these operations.

 modified: people.txt

no changes added to commit (use "git add" and/or "git commit -a")

Simply use git restore as instructed:

$> git restore people.txt

$> git status

On branch main

nothing to commit, working tree clean

Note that in this case, the change is forever lost as it was never committed.

Unstaging a staged file

If you have staged a file but realize you don’t want it in the next commit anymore, Git

also tells you what to do:

$> echo "Hi Steve" >> people.txt

$> git add people.txt

$> git status

On branch main

Changes to be committed:

 `(use "git restore --staged <file>..." to unstage)`

 modified: people.txt

Use git restore as instructed:

$> git restore --staged people.txt

The changes will still be in the file in the working directory. If you want to completely get

rid of them, you can use git restore as shown before.

Changing the commit message

Commit a new change:

$> echo Wolf >> people.txt

$> git add people.txt

$> git commit -m "Fix teh prblme"

Oops, you’ve used the wrong commit message. Want to change it?

$> git commit --amend -m "Fix the problem"

Adding changes to a commit

Make two changes but only commit one of them:

$> echo a > a.txt

$> echo b > b.txt

$> git add a.txt

$> git commit -m "Add a & b"

Oops, you forgot to stage one file. Want to add it to the last commit?

$> git add b.txt

Be careful: this changes the commit and its SHA-1 hash. You should not do this

if you have already shared this commit with others.

$> git commit --amend

Your editor will open to give you the opportunity to change the message if you want, but

you do not have to. Simply save and exit the editor. The changes to b.txt will now also

be in the last commit.

Best practices

Commit early and often, perfect later (Seth Robertson)

Git only takes full responsibility for your data when you commit. If you fail to commit

and then do something poorly thought out, you can run into trouble. Additionally,

having periodic checkpoints means that you can understand how you broke

something.

Writing a good commit message (GitKraken)

If by taking a quick look at previous commit messages, you can discern what each

commit does and why the change was made, you’re on the right track. But if your

commit messages are confusing or disorganized, then you can help your future self

and your team by improving your commit message practices with help from this

article.

Conventional Commits

If you want to go further, look at Conventional Commits, a specification for adding

human and machine readable meaning to commit messages.

Back to top

Be careful: this changes the commit and its SHA-1 hash. You should not do this

if you have already shared this commit with others.

https://sethrobertson.github.io/GitBestPractices/
https://sethrobertson.github.io/GitBestPractices/
https://www.gitkraken.com/learn/git/best-practices/git-commit-message
https://www.gitkraken.com/learn/git/best-practices/git-commit-message
https://www.conventionalcommits.org/

