
GIT BRANCHING
Architecture & Deployment

1ArchiDep 25-26 main@d1f6846

https://heig-vd.ch/
https://github.com/ArchiDep/website/blob/d1f684699a511826485586b2ea383cf021631add/course/collections/_course/202-git-branching/slides.md
https://archidep.ch/

Learn how to work on isolated, parallel lines of development with branches.

This is a condensed version of the , which you should read if you want more detailed
information on the subject.

You will need

A Unix CLI

Recommended reading

Resources

 (for large teams)

Speaker notes

Git

branching chapter of the Git Book

Git

Version control with Git

Git branching
Advanced merging
Understanding branches in Git
Branching workflows

A successful branching model
A successful branching model considered harmful
Branch-per-feature
Trunk-based development

https://git-scm.com/
https://git-scm.com/book/en/v2/Git-Branching-Branches-in-a-Nutshell
https://git-scm.com/
https://archidep.ch/course/201-git/
https://git-scm.com/book/en/v2/Git-Branching-Branches-in-a-Nutshell
https://git-scm.com/book/en/v2/Git-Tools-Advanced-Merging
https://blog.thoughtram.io/git/rebase-book/2015/02/10/understanding-branches-in-git.html
https://git-scm.com/book/en/v2/Git-Branching-Branching-Workflows
http://nvie.com/posts/a-successful-git-branching-model/
https://barro.github.io/2016/02/a-succesful-git-branching-model-considered-harmful/
http://dymitruk.com/blog/2012/02/05/branch-per-feature/
https://trunkbaseddevelopment.com/

WHAT IS BRANCHING?

Branching means you diverge from the main line of
development and continue to do work without messing

with that main line.

2

WHY USE BRANCHES?
Work in isolation
Pull changes from the main line at your own pace
Choose which features to release and when

3

Git has a very powerful branching model that is very lightweight and fast: it encourages workflows that branch and
merge often.

Many teams using Git create a separate branch to develop each feature.

Speaker notes

REMEMBER COMMITS?

387f12

c0252fT

9ab3fd

b458d4T

4f94fa

a15551T

4

Remember that Git stores data as a series of snapshots.

Each commit (the circles above) contains a pointer to the snapshot of the content you staged, represented by the blue
Tree rectangles (as they refer to a tree of file snapshots).

Each commit also contains:

The user name and e-mail or the author
The date at which the commit was created
A pointer to the previous commit (or commits)

Speaker notes

BRANCHES POINT TO COMMITS
A branch is a lightweight, movable pointer to a commit.

mainHEAD

387f12 9ab3fd 4f94fa

5

The default branch is main (or master with the default Git configuration). The special HEAD pointer indicates the
current branch.

As you start making commits, the current branch pointer automatically moves forward to your latest commit.

Speaker notes

EXAMPLE REPOSITORY
We will use a prepared repository to illustrate

branching. Clone it and check it out.

$> cd /path/to/projects

$> git clone https://github.com/ArchiDep/git-branching-ex.git

$> cd git-branching-ex

We will talk more about this
$> git remote rm origin

6

As you can see if you type git log , there are some commits already. Open the project with your favorite editor and
open the index.html page in a browser.

Speaker notes

WORKING WITH BRANCHES

7

SHOWING BRANCHES ON THE COMMAND LINE
$> git log --oneline --decorate --graph --all
 * 4f94fa (HEAD -> main) Improve layout
 * 9ab3fd Fix addition
 * 387f12 First version

8

The can show you a representation of the commit graph and its branches.

Speaker notes

git log command

https://git-scm.com/docs/git-log

CREATING GIT ALIASES
$> git config --global alias.graph \
 "log --oneline --decorate --graph --all"

$> git graph
 * 4f94fa (HEAD -> main) Improve layout
 * 9ab3fd Fix addition
 * 387f12 First version

9

In fact, this command is so useful you should make an alias, as we will use it a lot in this tutorial.

Speaker notes

CREATE A NEW BRANCH

mainHEAD

387f12 9ab3fd 4f94fa

feature-sub

🛠️ Our JavaScript calculator is missing some code.
Let's create a branch to implement subtraction.

$> git branch feature-sub

10

It's very fast and simple to create a new branch. Use the git branch command to create a branch called "feature-
sub":

There is now a new pointer to the current commit. Note that HEAD didn't move – we are still on the main branch.

Speaker notes

SHOWING THE CURRENT BRANCH
$> git branch
 * main
 feature-sub

11

You can use git branch without arguments to simply see the list of branches and which one you are currently on:

The star is displayed next to the current branch.

Speaker notes

SWITCH BRANCHES

main

HEAD

387f12 9ab3fd 4f94fa

feature-sub

$> git switch feature-sub # or git checkout feature-sub
Switched to branch 'feature-sub'

🛠️ You can now implement the subtraction in
subtraction.js . Move on to the next slide

once you're done.

12

Now let's switch to the feature-sub branch:

This moves HEAD to point to the feature-sub branch. Nothing else happened because HEAD is still pointing to the
same commit as main .

Speaker notes

COMMIT ON A BRANCH

main HEAD

387f12 9ab3fd 4f94fa

feature-sub

712ff2

$> git add subtraction.js

$> git commit -m "Implement subtraction"
[feature-sub 712ff2] Implement subtraction
 1 file changed, 1 insertion(+), 1 deletion(-)

13

Once you're done, it's time to add and commit your changes. As you commit, the current branch (the one pointed to by
HEAD) moves forward to the new commit.

Speaker notes

SWITCH BACK TO main
🛠️ Oops, you just noticed that addition is not

working correctly. You need to make a bug fix, but
you don't want to mix that code with the new
subtraction feature. Let's go back to main .

14

SWITCH/CHECKOUT BEHAVIOR

mainHEAD

387f12 9ab3fd 4f94fa

feature-sub

712ff2

Now check your files.

$> git switch main # or git checkout main
Switched to branch 'main'

15

Two things happened when you ran git switch main (or git checkout main):

The HEAD pointer was moved back to the main branch.
The files in your working directory were reverted back to the snapshot that main points to.

You have essentially rewinded the work you've done in feature-sub , and are working on an older version of the
project.

Speaker notes

CREATE ANOTHER BRANCH

main

HEAD

387f12 9ab3fd 4f94fa

feature-sub

712ff2

fix-add

🛠️ Let's create a new branch to fix the bug.

$> git switch -c fix-add # or git checkout -b fix-add
Switched to a new branch 'fix-add'

16

You can create a new branch and switch to it in one command with the -c (create) option of the switch command or
the -b (new branch) option of the checkout command.

Nothing changed yet because fix-add still points to the same commit as main .

Speaker notes

WORK ON A SEPARATE BRANCH

main

HEAD

387f12 9ab3fd 4f94fa

feature-sub

712ff2

fix-add

2817bc

🛠️ Fix addition.js and commit your changes.

$> git add addition.js
$> git commit -m "Fix addition"
[fix-add 2817bc] Fix addition
 1 file changed, 1 insertion(+), 1 deletion(-)

17

DIVERGENT HISTORY

main

HEAD

387f12 9ab3fd 4f94fa

feature-sub

712ff2

fix-add

2817bc

$> git switch feature-sub
$> git switch fix-add

18

Your project history has now diverged.

The changes in feature-sub and fix-add are isolated. You can switch back and forth between the branches
with git switch or git checkout :

Every time you switch to one of these branches, the files in your working directory are updated to reflect the state of
the corresponding commit, or snapshot.

Speaker notes

MERGING
Let's bring back those changes to the main line.

mainHEAD

387f12 9ab3fd 4f94fa

feature-sub

712ff2

fix-add

2817bc

$> git switch main # or git checkout main

19

Now that you've tested your fix and made sure it works, you want to bring those changes back into the main
branch.

Git's merge command can do that for you, but it can only bring changes from another branch into the current
branch, not the other way around. So you must first switch to the main branch.

Speaker notes

MERGE A BRANCH
Merge the changes from the fix-add branch:

Notice the term fast-forward.

$> git merge fix-add
Updating 4f94fa..2817bc
Fast-forward
 addition.js | 2 +-
 1 file changed, 1 insertion(+), 1 deletion(-)

20

FAST-FORWARD

mainHEAD

387f12 9ab3fd 4f94fa

feature-sub

712ff2

fix-add

2817bc

21

The fix-add branch pointed to a commit directly ahead of the commit main pointed to. There is no divergent
history, so Git simply has to moves the pointer forward. This is what is called a fast-forward.

Speaker notes

DELETE A BRANCH

mainHEAD

387f12 9ab3fd 4f94fa

feature-sub

712ff2

2817bc

$> git branch -d fix-add
Deleted branch fix-add (was 2817bc).

22

Now that we've brought our fix back into main , we don't need the fix-add branch anymore. Let's delete it with the -
d (delete) option of the branch command:

Speaker notes

CONTINUE WORKING ON A FEATURE BRANCH

main

HEAD

387f12 9ab3fd 4f94fa

feature-sub

712ff2

2817bc

🛠️ Let's switch back to our feature-sub branch
and finish our work. As good programmers, we need

to write a comment for the subtract function.

$> git switch feature-sub # or git checkout feature-sub

23

COMMIT YOUR CHANGES

main

HEAD

387f12 9ab3fd 4f94fa

feature-sub

712ff2

2817bc

f92ab0

🛠️ Once you are done, commit your changes.

$> git add subtraction.js
$> git commit -m "Comment subtract function"

24

MERGING A DIVERGENT HISTORY

main

HEAD

387f12 9ab3fd 4f94fa

feature-sub

712ff2

2817bc

f92ab0

Oops, no fast-forward here.

25

Now that we're happy with our new subtraction feature, we want to merge it into main as well. But the feature-sub
branch has diverged from some older point compared to main , so Git cannot do a fast-forward:

feature-sub points to commit f92ab0 which contains our feature.
main points to commit 2817bc which contains the addition fix.
Commit 4f94fa is the common ancestor.

Git will do a three-way merge instead, combining together the changes of main and feature-sub (compared to
the common ancestor). A new commit will be created representing that state.

Speaker notes

MERGE THE DIVERGENT BRANCH
🛠️ Switch back to the main branch and merge

feature-sub into it.

$> git switch main # or git checkout main
$> git merge feature-sub
Merge made by the 'recursive' strategy.
 subtraction.js | 5 ++++-
 1 file changed, 4 insertions(+), 1 deletion(-)

26

MERGE COMMIT MESSAGE
Git will ask you to confirm the commit message:

If you are in Vim, type :wq (write and quit) to save and
exit. If you are in nano, use Ctrl-X .

 Merge branch 'feature-sub'

 # Please enter a commit message to explain why this merge is
 # necessary, especially if it merges an updated upstream into
 # a topic branch.
 #
 # Lines starting with '#' will be ignored, and an empty
 # message aborts the commit.

27

Git will need to create a new commit when you run the merge command, so it will open the configured editor (Vim by
default if you have not changed it) with a generated commit message.

Speaker notes

MERGE COMMIT

mainHEAD

387f12 9ab3fd 4f94fa

feature-sub

712ff2

2817bc

f92ab0 04fb82

You can see the new merge commit that Git has
created. It is a special commit in that it has more than

one parent.

28

DELETE feature-sub

mainHEAD

387f12 9ab3fd 4f94fa 712ff2

2817bc

f92ab0 04fb82

$> git branch -d feature-sub

29

MERGE CONFLICTS
Occasionally, the merge process doesn't go smoothly: if
the same line(s) in the same file(s) was modified in two
diverging branches and you merge them together, Git

can't know which is the correct version.

30

CREATE SOME CONFLICT
Let's pretend that a colleague of yours also

implemented the subtraction function but in a different
way than you did.

🍺 It must have been a colleague... you weren't that
drunk last night.

31

FIND THE COMMON ANCESTOR
Let's find our original starting point (the common

ancestor where feature-sub and fix-add
diverged) and start a new branch from there.

Make a copy of that commit hash.

 * 4f94fa (origin/main, origin/HEAD) Comment add function

$> git graph1
 * 04fb82 (HEAD -> main) Merge branch 'feature-sub'2
 |\3
 | * f92ab0 Comment subtract function4
 * | 2817bc Fix addition5
 | * 712ff2 Implement subtraction6
 |/7

8
 * 9ab3fd Simplify addition and subtraction implementation9
 * 387f12 First version10

32

We want to make it look as if your colleague did his work at the same time as you.

Speaker notes

Note that the actual hash of the commit on your machine may be different than the one in this slide.

CREATE A BRANCH "IN THE PAST"

mainHEAD

387f12 9ab3fd 4f94fa 712ff2

2817bc

f92ab0 04fb82

better-sub

$> git switch -c better-sub 4f94fa
or git checkout -b better-sub 4f94fa

33

You can create a branch at any point in the project's history by passing an additional commit reference to git switch
or git checkout .

The HEAD has now moved to that point in the project's past history.

Speaker notes

MAKE A CONFLICTING CHANGE
🛠️ Now edit subtraction.js and implement

subtraction again, but in a different way.

function subtract(a, b) {
 return -b + a;
}

34

CANNOT CHECK OUT CONFLICTING CHANGES
Git will not let you switch to main at this point:

$> git switch main # or git checkout main
error: Your local changes to the following files would be
overwritten by checkout:
 subtraction.js
Please commit your changes or stash them before you
switch branches.
Aborting

35

Git won't let you do it because the state of subtraction.js is different in that branch.

Speaker notes

COMMIT THE CONFLICTING CHANGES

main

HEAD

387f12 9ab3fd 4f94fa 712ff2

2817bc

f92ab0 04fb82

better-sub

98ff62

$> git add subtraction.js
$> git commit -m "Implement a better subtract"

36

Viewing the graph of commits, it's clear that the change has been made in parallel with our earlier changes.

Speaker notes

MERGE THE CONFLICTING BRANCH
Go back to main and try to merge the better-sub

branch:

It will fail!

$> git switch main # or git checkout main
$> git merge better-sub
Auto-merging subtraction.js
CONFLICT (content): Merge conflict in subtraction.js
Recorded preimage for 'subtraction.js'
Automatic merge failed; fix conflicts
and then commit the result.

37

Git tells you that a content conflict has occurred in subtraction.js .

The merge has failed and no new commit has been created.

Speaker notes

CHECK THE STATUS OF THE CONFLICT
Let's see what git status tells us:

$> git status
On branch main
You have unmerged paths.
 (fix conflicts and run "git commit")
 (use "git merge --abort" to abort the merge)

Unmerged paths:
 (use "git add <file>..." to mark resolution)

 both modified: subtraction.js

no changes added to commit
 (use "git add" and/or "git commit -a")

38

Git tells you that the merge is not complete:
You can either fix the conflicts and run git commit to end the merge, or cancel the whole thing with
git merge --abort.

subtraction.js was modified in both the current branch and the branch we are trying to merge in.
You can use git add to mark the conflicts in a file as resolved.

Speaker notes

INSPECT THE CONFLICTED FILE
Let's see what's in subtraction.js :

/**
 * Takes two numbers a and b, and returns
 * the result of subtracting b from a.
 */
function subtract(a, b) {
<<<<<<< HEAD
 return a - b;
=======
 return -b + a;
>>>>>>> better-sub
}

calculate('subtraction', subtract);

39

Notice two things here:

Git has successfully merged the comment on the subtract function, since only one person changed these
lines.
Git could not merge the line with the computation, because the changes in the two branches conflict. It has
added conflict markers to help you solve the issue.

Speaker notes

CONFLICT MARKERS
Git has no idea what's right:

It is your responsibility to choose the correct version
(and remove the conflict markers).

<<<<<<< HEAD
 return a - b;
=======
 return -b + a;
>>>>>>> better-sub

40

Take a closer look at the conflict markers:

The section between <<<<<<< HEAD and ======= is the content that was present in the current branch (HEAD)
before you merged.
The section between ======= and >>>>>>> better-sub is the content that is being merged in from the
better-sub branch.

Since Git cannot know which is better, it's your responsibility to:

Remove the version you don't want, and...
Remove the marker conflicts.

Note that you could also write a new version combining changes from the two versions.

Speaker notes

return -b + a;

MARK THE CONFLICT AS RESOLVED
Now that you have fixed the conflict, do as instructed

by Git and add the file to the staging area:

$> git add subtraction.js

$> git status
On branch main
All conflicts fixed but you are still merging.
 (use "git commit" to conclude merge)

Changes to be committed:

 modified: subtraction.js

41

COMMIT THE RESOLVED CONFLICTS
You still need to commit to end the merge:

$> git commit -m "Merge better-sub into main"

42

If you do not specify a commit message with -m , Git will generate one for you and open the configured editor (Vim by
default) for you to check and/or change the message. Type :wq to exit from Vim or Ctrl-X to exit from nano, and to
make the commit.

Speaker notes

THE STATE AFTER MERGING

mainHEAD

387f12 9ab3fd 4f94fa 712ff2

2817bc

f92ab0 04fb82

98ff62

174c45

$> git branch -d better-sub

43

The latest commit on main now includes the changes from all lines of development.

Speaker notes

MERGE FILE CONFLICTS
Sometimes it's not just the contents of a file:

You could have modified a file in your branch.
Someone else could have deleted it in another
branch.

🍻 It must have been someone else... right?

44

BACK TO THE FUTURE PAST

mainHEAD

387f12 9ab3fd 4f94fa 712ff2

2817bc

f92ab0 04fb82

98ff62

f88322

cleanup

or git checkout -b cleanup 4f94fa
$> git switch -c cleanup 4f94fa

45

MAKE A CONFLICTING FILE CHANGE

main

HEAD

387f12 9ab3fd 4f94fa 712ff2

2817bc

f92ab0 04fb82

98ff62

13ab7d

cleanup

12ac65

🛠️ This time, delete subtraction.js . We don't
tolerate incomplete code in our project.

$> rm subtraction.js
$> git add .
$> git commit -m "Remove incomplete implementation"

46

MERGE THE CONFLICTING BRANCH
Let's try to merge that branch into main :

Conflict!

$> git switch main # or git checkout main
$> git merge cleanup
CONFLICT (modify/delete): subtraction.js deleted in cleanup
 and modified in HEAD. Version HEAD of subtraction.js left
 in tree.
Automatic merge failed; fix conflicts
 and then commit the result.

47

Git tells you immediately that there is a conflict and that:

subtraction.js was deleted in the cleanup branch.
subtraction.js was modified in the current branch (HEAD).
Git doesn't know whether it should apply the deletion or the modification, so it left the modified file for you to
check.

Speaker notes

CHECK THE STATUS OF THE FILE CONFLICT
$> git status
On branch main
You have unmerged paths.
 (fix conflicts and run "git commit")
 (use "git merge --abort" to abort the merge)

Unmerged paths:
 (use "git add/rm <file>..." as appropriate to mark resolution)

 deleted by them: subtraction.js

no changes added to commit
 (use "git add" and/or "git commit -a")

48

Again, Git gives us some information:

subtraction.js was deleted by "them", meaning that it was deleted in the branch you're trying to merge in
(if it had been deleted in the current branch and modified in the other branch, it would be deleted by "us").
Use either git add or git rm to mark the conflict as resolved.

Speaker notes

TO DELETE, OR NOT TO DELETE...
You have to choose whether you want to either:

Keep the modified file (use git add), or...
Remove it (use git rm)

49

RESOLVE THE FILE CONFLICT
Let's keep it:

$> git add subtraction.js
$> git status
On branch main
All conflicts fixed but you are still merging.
 (use "git commit" to conclude merge)

50

COMMIT THE RESOLVED FILE CONFLICT
As instructed, use git commit to complete the

merge:

Finally, delete the cleanup branch:

$> git commit -m "Merge cleanup (kept subtraction.js)"

$> git branch -d cleanup

51

FINAL STATE
And you're done!

mainHEAD

387f12 9ab3fd 4f94fa 712ff2

2817bc

f92ab0 04fb82

98ff62

5e3899

12ac65

ea9701

 </file></file>

52

