HE"

IG

GIT BRANCHING

Architecture & Deployment

https://heig-vd.ch/
https://github.com/ArchiDep/website/blob/d1f684699a511826485586b2ea383cf021631add/course/collections/_course/202-git-branching/slides.md
https://archidep.ch/

Learn how to work on isolated, parallel lines of development with Git branches.

This is a condensed version of the branching chapter of the Git Book, which you should read if you want more detailed
information on the subiject.

You will need

e A Unix CLI
e Git

Recommended reading
e Version control with Git

Resources

Git branching
Advanced merging
Understanding branches in Git
Branching workflows
= A successful branching model (for large teams)
= A successful branching model considered harmful
= Branch-per-feature
= Trunk-based development

https://git-scm.com/
https://git-scm.com/book/en/v2/Git-Branching-Branches-in-a-Nutshell
https://git-scm.com/
https://archidep.ch/course/201-git/
https://git-scm.com/book/en/v2/Git-Branching-Branches-in-a-Nutshell
https://git-scm.com/book/en/v2/Git-Tools-Advanced-Merging
https://blog.thoughtram.io/git/rebase-book/2015/02/10/understanding-branches-in-git.html
https://git-scm.com/book/en/v2/Git-Branching-Branching-Workflows
http://nvie.com/posts/a-successful-git-branching-model/
https://barro.github.io/2016/02/a-succesful-git-branching-model-considered-harmful/
http://dymitruk.com/blog/2012/02/05/branch-per-feature/
https://trunkbaseddevelopment.com/

WHAT IS BRANCHING?
Lol e\,

Branching means you diverge from the main line of
development and continue to do work without messing
with that main line.

WHY USE BRANCHES?

e \Work in isolation
e Pull changes from the main line at your own pace
e Choose which features to release and when

Git has a very powerful branching model that is very lightweight and fast: it encourages workflows that branch and
merge often.

Many teams using Git create a separate branch to develop each feature.

REMEMBER COMMITS?
O O O

38712 9ab3fd 4f94fa

Speaker notes
Remember that Git stores data as a series of snapshots.

Each commit (the circles above) contains a pointer to the snapshot of the content you staged, represented by the blue
Tree rectangles (as they refer to a tree of file snapshots).

Each commit also contains:

e The user name and e-mail or the author
e The date at which the commit was created
e A pointer to the previous commit (or commits)

BRANCHES POINT T0 COMMITS

A branch is a lightweight, movable pointer to a commit.

main
O O O

387112 9ab3fd 4f94fa

The default branch is (or with the default Git configuration). The special (HEAD) pointer indicates the

current branch.

As you start making commits, the current branch pointer automatically moves forward to your latest commit.

EXAMPLE REPOSITORY

We will use a prepared repository to illustrate
branching. Clone it and check it out.

cd /path/to/projects

git clone https://github.com/ArchiDep/git-branching-ex.git

cd git-branching—ex

git remote rm origin

Speaker notes

As you can see if you type , there are some commits already. Open the project with your favorite editor and
open the (index. htmU) page in a browser.

WORKING WITH BRANCHES

SHOWING BRANCHES ON THE COMMAND LINE

$> git log ——oneline —-decorate ——-graph ——all
* 4f94fa (HEAD —> main) Improve layout

* 9ab3fd Fix addition
x 387112 First version

Speaker notes

The command can show you a representation of the commit graph and its branches.

https://git-scm.com/docs/git-log

CREATING GIT ALIASES

git config ——global alias.graph \
"log ——oneline —--decorate —--graph ——all"

git graph

4f94fa (HEAD —> main) Improve layout
9ab3fd Fix addition
387f12 First version

Speaker notes

In fact, this command is so useful you should make an alias, as we will use it a lot in this tutorial.

CREATE A NEW BRANCH

Xour JavaScript calculator is missing some code.
Let's create a branch to implement subtraction.

$> git branch feature-sub

main
O O O
/
387112 9ab3fd 4f94fa

feature-sub

Speaker notes

It's very fast and simple to create a new branch. Use the (git branch) command to create a branch called "feature-
sub™:

There is now a new pointer to the current commit. Note that (HEAD) didn't move — we are still on the branch.

SHOWING THE CURRENT BRANCH

Speaker notes

You can use (git branch) without arguments to simply see the list of branches and which one you are currently on:

The star is displayed next to the current branch.

SWITCH BRANCHES

$> git switch feature-sub

Switched to branch 'feature-sub’

main

38712 9ab3fd 4f94fa
3|00 feature—-sub

X You can now implement the subtraction in
(subtraction. js) Moveon to the next slide
once you're done.

Speaker notes

Now let's switch to the (feature-sub) branch:

This moves (HEAD) to point to the (feature—sub) branch. Nothing else happened because (HEAD) is still pointing to the
same commit as (main).

COMMIT ON A BRANCH

$> git add subtraction.js

$> git commit -m "Implement subtraction"
[feature-sub 712ff2] Implement subtraction
1 file changed, 1 insertion(+), 1 deletion(-)

main [N feature—sub

O O O O

387112 9ab3fd 4f94fa 712ff2

Speaker notes

Once you're done, it's time to add and commit your changes. As you commit, the current branch (the one pointed to by
HEAD)) moves forward to the new commit.

SWITCHBACKTO ma 1n

X Oops, you just noticed that addition is not
working correctly. You need to make a bug fix, but
you don't want to mix that code with the new

subtraction feature. Let's go back to(main)

SWITCH/CHECKOUT BEHAVIOR

$> git switch main

Switched to branch 'main'

38712 9ab3fd 4f94fa 71212

Now check your files.

Two things happened when you ran (git switch main) (or (git checkout main)):

e The HEAD pointer was moved back to the main branch.
o The files in your working directory were reverted back to the snapshot that main points to.

You have essentially rewinded the work you've done in (feature-sub), and are working on an older version of the
project.

CREATE ANOTHER BRANCH

‘ X Let's create a new branch to fix the bug.

$> git switch -c fix-add

Switched to a new branch 'fix-add'

main feature-sub
38712 9ab3fd 4f94fa 712ff2

|28 fix—add

Speaker notes

You can create a new branch and switch to it in one command with the @ (create) option of the command or

the (new branch) option of the command.
Nothing changed yet because still points to the same commit as (main).

WORK ON A SEPARATE BRANCH

‘ XFix(addition. js)and commit your changes. ‘

$> git add addition.js
$> git commit -m "Fix addition"

[fix—add 2817bc] Fix addition
1 file changed, 1 insertion(+), 1 deletion(-)

main feature-sub
387112 9ab3fd 4f94fa 712ff2

fix—add

2817bc

$> git switch feature-sub
$> git switch fix-add

main feature-sub
38712 9ab3fd 4f94fa 712Ff2

fix—add

2817bc

Your project history has now diverged.

The changes in (feature—sub) and are isolated. You can switch back and forth between the branches
with (git switch)or(git checkout):

Every time you switch to one of these branches, the files in your working directory are updated to reflect the state of
the corresponding commit, or snapshot.

MERGING

Let's bring back those changes to the main line.

main feature-sub
O O O O
_/

38712 9ab3fd 4f94fa 712Ff2
fix—add

2817bc

Now that you've tested your fix and made sure it works, you want to bring those changes back into the
branch.

Git's command can do that for you, but it can only bring changes from another branch into the current
branch, not the other way around. So you must first switch to the branch.

MERGE A BRANCH

Merge the changes from the (f ix—add)branch:

$> git merge fix-add
Updating 4f94fa..2817bc

Fast-forward
addition.js | 2 +-
1 file changed, 1 insertion(+), 1 deletion(-)

Notice the term fast-forward.

FAST-FORWARD

feature-sub

O

387112

() () <:::)

/)

9ab3fd 4f94fa 712f£2
fix-add

2817bc

[N main

The branch pointed to a commit directly ahead of the commit pointed to. There is no divergent
history, so Git simply has to moves the pointer forward. This is what is called a fast-forward.

DELETE A BRANCH

$> git branch -d fix-add

Deleted branch fix—add (was 2817bc).

feature-sub

O O O O

387112 9ab3fd 4f94fa 71212

2817bc

[N main

Speaker notes

Now that we've brought our fix back into (nain), we don't need the branch anymore. Let's delete it with the (=

E:D (delete) option of the command:

CONTINUE WORKING ON A FEATURE BRANCH

X Let's switch back to our (feature—sub)branch

and finish our work. As good programmers, we need
to write a comment for the subtract function.

$> git switch feature-sub

3| feature—sub

O O O O
_,/ _/L\\\\\\\\\\\\\\\\<:::>
387112 9ab3fd 4f94fa 71212

2817bc

COMMIT YOUR CHANGES

‘ X Once you are done, commit your changes. ‘

$> git add subtraction.js

$> git commit -m "Comment subtract function"

DN feature—sub

O——O0O—=0 O

387112 9ab3fd 4f94fa 71212 92abo

O

2817bc

main

O

MERGING A DIVERGENT HISTORY

3 |&FDON feature—sub

387112

2\ () 2\ O
\\-’/ \\—/L\\\\\\\\\\\\;EEE;
9ab3fd 4f94fa 712Ff2 92ab0o

2817bc

Oops, no fast-forward here.

Now that we're happy with our new subtraction feature, we want to merge it into as well. But the (feature-sub)
branch has diverged from some older point compared to (main), so Git cannot do a fast-forward:

e feature-sub points to commit f92ab@ which contains our feature.
e main points to commit 2817bc which contains the addition fix.
e Commit 4f94fa is the common ancestor.

Git will do a three-way merge instead, combining together the changes of and (feature—sub) (compared to
the common ancestor). A new commit will be created representing that state.

MERGE THE DIVERGENT BRANCH

X Switch back to the branch and merge
(feature-sub)intoit.

$> git switch main
$> git merge feature-sub

Merge made by the 'recursive' strategy.
subtraction.js | 5 ++++-
1 file changed, 4 insertions(+), 1 deletion(-)

MERGE COMMIT MESSAGE

Git will ask you to confirm the commit message:

Merge branch 'feature-sub'

Please enter a commit message to explain why this merge is
necessary, especially if it merges an updated upstream into
a topic branch.

Lines starting with '#' will be ignored, and an empty
message aborts the commit.

If you are in Vim, type (write and quit) to save and

exit. If you are in nano, use (Ct r1-X).

Git will need to create a new commit when you run the command, so it will open the configured editor (Vim by
default if you have not changed it) with a generated commit message.

MERGE COMMIT

feature-sub main
G () () ()
_/ N\ /

387112 Q9ab3fd 4f94fa 71212 92ab0

041b82

2817bc

You can see the new merge commit that Git has
created. It is a special commit in that it has more than
one parent.

DELETE feature—-sub

$> git branch -d feature-sub

3|08 main

O—O O

387112 9ab3fd 4f94fa 71212

O

041b82

2817bc

MERGE CONFLICTS

Occasionally, the merge process doesn't go smoothly: if
the same line(s) in the same file(s) was modified in two
diverging branches and you merge them together, Git
can't know which is the correct version.

CREATE SOME CONFLICT

Let's pretend that a colleague of yours also
implemented the subtraction function but in a different
way than you did.

&Y |t must have been a colleague... you weren't that
drunk last night.

FIND THE COMMON ANCESTOR

Let's find our original starting point (the common
ancestor where (feature-sub)and (fix—-add
diverged) and start a new branch from there.

8 x 4f94fa (origin/main, origin/HEAD) Comment add

Make a copy of that commit hash.

We want to make it look as if your colleague did his work at the same time as you.

Note that the actual hash of the commit on your machine may be different than the one in this slide.

CREATE A BRANCH "IN THE PAST"

$> git switch —-c better-sub 4f94fa

|8 better—sub main

O—O—"CO—0—=0

387112 9ab3fd 4f94fa 71212 92ab0

041b82

2817bc

Speaker notes

You can create a branch at any point in the project's history by passing an additional commit reference to (git switch
or(git checkout).

The (HEAD) has now moved to that point in the project's past history.

MAKE A CONFLICTING CHANGE

X Now edit(subtraction. js)and implement
subtraction again, but in a different way.

subtract(a, b) {

-b + a;

CANNOT CHECK OUT CONFLICTING CHANGES

Git will not let you switch to at this point:

$> git switch main
error: Your local changes to the following files would be
overwritten by checkout:

subtraction.js

Please commit your changes or stash them before you
switch branches.
Aborting

Speaker notes

Git won't let you do it because the state of (subtraction. js) is different in that branch.

COMMIT THE CONFLICTING CHANGES

$> git add subtraction.js

$> git commit -m "Implement a better subtract"

main

O—O

387112 9ab3fd 4194 71212

m m
o/ O/
£92 04fb82

2817bc

better-sub

O

08ff62

Viewing the graph of commits, it's clear that the change has been made in parallel with our earlier changes.

MERGE THE CONFLICTING BRANCH

Go back to and try to merge the (better-sub)
branch:

$> git switch main
$> git merge better-sub
Auto-merging subtraction.js

CONFLICT (content): Merge conflict subtraction.js
Recorded preimage 'subtraction.js'

Automatic merge failed; fix conflicts

and commit the result.

It will fail!

Git tells you that a content conflict has occurred in (subtraction.js).

The merge has failed and no new commit has been created.

CHECK THE STATUS OF THE CONFLICT

Let's see what(git status)tells us:

$> git status
On branch main
You have unmerged paths.
(fix conflicts and run "git commit")
(use "git merge ——abort" to abort the merge)

Unmerged paths:
(use "git add <file>..." to mark resolution)

both modified: subtraction.js

no changes added to commit
(use "git add" and/or '"git commit -a")

o Git tells you that the merge is not complete:
= You can either fix the conflicts and run git commit to end the merge, or cancel the whole thing with
git merge ——abort.
e subtraction.js was modified in both the current branch and the branch we are trying to merge in.
e Youcanuse git add to mark the conflicts in a file as resolved.

INSPECT THE CONFLICTED FILE

Let's see what's in(subtraction. js}:

subtract(a, b) {
<<<<<<< HEAD

>>>>>>> petter—-sub

}

calculate('subtraction', subtract);

Notice two things here:

o Git has successfully merged the comment on the subtract function, since only one person changed these
lines.

o Git could not merge the line with the computation, because the changes in the two branches conflict. It has
added conflict markers to help you solve the issue.

CONFLICT MARKERS

Git has no idea what's right:

<<<<<<< HEAD
return a - b;

return -b + a;
>>>>>>> petter—-sub

It is your responsibility to choose the correct version
(and remove the conflict markers).

Take a closer look at the conflict markers:

¢ The section between <<<<<<< HEAD and =======

is the content that was present in the current branch (HEAD)
before you merged.

e The section between ======= and >>>>>>> better-sub is the content that is being merged in from the
better—sub branch.

Since Git cannot know which is better, it's your responsibility to:

e Remove the version you don't want, and...
e Remove the marker conflicts.

Note that you could also write a new version combining changes from the two versions.

MARK THE CONFLICT AS RESOLVED

Now that you have fixed the conflict, do as instructed
by Git and add the file to the staging area:

$> git add subtraction.js

$> git status

On branch main
All conflicts fixed but you are still merging.

(use "git commit" to conclude merge)

Changes to be committed:

modified: subtraction.js

COMMIT THE RESOLVED CONFLICTS

You still need to commit to end the merge:

$> git commit -m "Merge better-sub into main"

Speaker notes

If you do not specify a commit message with @ Git will generate one for you and open the configured editor (Vim by
default) for you to check and/or change the message. Type to exit from Vim or (Ctr1-X) to exit from nano, and to
make the commit.

THE STATE AFTER MERGING

$> git branch -d better-sub

main
()

041b82

O—0O—"CQ—0O

387112 9ab3fd 4194 71212

O

174c45

98ff62

Speaker notes

The latest commit on now includes the changes from all lines of development.

MERGE FILE CONFLICTS

Sometimes it's not just the contents of a file:

e You could have modified a file in your branch.
e Someone else could have deleted it in another
branch.

% [t must have been someone else... right?

BACK TO THE FUFYRE PAST

cleanup main
O () () () () ()
o/ O/ o/

387112 9ab3fd 4194f 71212 f9

88322

981162

MAKE A CONFLICTING FILE CHANGE

X This time, delete(subtraction. js) We don't
tolerate incomplete code in our project.

$> rm subtraction.js
$> git add .

$> git commit -m "Remove incomplete implementation"

main

387112 9ab3fd 4194 13ab7d

cleanup

10~ ~LC

MERGE THE CONFLICTING BRANCH

Let's try to merge that branch into(main}:

$> git switch main
$> git merge cleanup
CONFLICT (modify/delete): subtraction.js deleted cleanup

and modified HEAD. Version HEAD of subtraction.js left

tree.
Automatic merge failed; fix conflicts
and commit the result.

Conflict!

Git tells you immediately that there is a conflict and that:

e subtraction.js was deleted in the cleanup branch.
e subtraction.js was modified in the current branch (HEAD).
o Git doesn't know whether it should apply the deletion or the modification, so it left the modified file for you to

check.

CHECK THE STATUS OF THE FILE CONFLICT

$> git status
On branch main
You have unmerged paths.
(fix conflicts and run "git commit")
(use "git merge —--abort" to abort the merge)

Unmerged paths:
(use "git add/rm <file>..." as appropriate to mark resolution)

deleted by them: subtraction.js

no changes added to commit
(use "git add" and/or "git commit -a")

Again, Git gives us some information:

e subtraction.js was deleted by "them", meaning that it was deleted in the branch you're trying to merge in
(if it had been deleted in the current branch and modified in the other branch, it would be deleted by "us").
e Use either git add or git rm to mark the conflict as resolved.

T0 DELETE, OR NOT T0 DELETE...

You have to choose whether you want to either:

e Keep the modified file (use git add),or...
* Remove it (use git rm)

RESOLVE THE FILE CONFLICT

Let's keep it:

$> git add subtraction.js
$> git status
On branch main

All conflicts fixed but you are still merging.
(use "git commit" to conclude merge)

COMMIT THE RESOLVED FILE CONFLICT

As instructed, use(git commit)to complete the
merge:

$> git commit -m "Merge cleanup (kept subtraction.js)"

Finally, delete the (c Leanup)branch:

$> git branch -d cleanup

FINAL STATE

And you're done!

3|00 main

387112 9ab3fd

</file></file>

