
Architecture & Deployment

2025-2026 v0.1.0 on branch main Rev: 03b1cdace14bb0b0720e24be862097b3792214ea

Hello GitHub

Learn how to collaborate on GitHub with Git.

This tutorial is meant to be performed by a group of two. Throughout the rest of the

document, the members of the group will be referred to as Bob and Alice.

The tutorial follows the previous Git branching tutorial. If you have done this

demonstration on your computer, you can continue from there, otherwise we will provide

a repository with the correct starting state.

 Legend

 Create a free GitHub account

 Check your SSH key

 Create an SSH key

 Copy the SSH key

 Add the SSH key to your GitHub account

 Share changes

 Bob: clone the starting state

 Bob: create a repository on GitHub

 Bob: add Alice as a collaborator

 Bob: copy the remote SSH URL

 Bob: add the remote to your local repository

 Bob: push your commits to the shared repository

 Bob: remote branches

 Alice: get the remote repository’s SSH URL

 Alice: clone the shared repository

 Alice: remote branches

Table of contents

https://archidep.ch/
https://github.com/ArchiDep/website/tree/main
https://github.com/ArchiDep/website/blob/03b1cdace14bb0b0720e24be862097b3792214ea/course/collections/_course/204-hello-github/exercise.md
https://github.com/
https://git-scm.com/
https://archidep.ch/course/202-git-branching/slides/

Legend

Parts of this exercise are annotated with the following icons:

A task you MUST perform to complete the exercise

An optional step that you may perform to make sure that everything is working

correctly, or to set up additional tools that are not required but can help you

The end of the exercise

The architecture of the software you ran or deployed during this exercise.

 Alice: make local changes

 Alice: check the state of branches

 Alice: push to the shared repository

 Bob: check the state of branches

 Bob: fetch changes from the shared repository

 Bob: merge fetched changes

 Managing conflicting commit histories

 Bob: fix the bug

 Alice: make other changes

 Alice: push the other changes

 Rejected pushes

Alice: fetch the changes

Alice: try to push again

 Divergent history

 Alice: pull changes from the shared repository

 Alice: check the conflict markers

 Alice: check the state of branches

 Alice: push the changes

 Bob: pull the changes

 What have I done?

Troubleshooting tips: how to fix common problems you might encounter

You will need

Git

A free GitHub account

A Unix CLI

Recommended reading

Version control with Git

Git branching

Collaborating with Git

Going further

Git Branching - Remote Branches

Distributed Git

Create a free GitHub account

Both group members should register on GitHub:

https://git-scm.com/
https://github.com/
https://archidep.ch/course/201-git/
https://archidep.ch/course/202-git-branching/slides/
https://archidep.ch/course/203-git-collaborating/slides/
https://git-scm.com/book/en/v2/Git-Branching-Remote-Branches
https://git-scm.com/book/en/v2/Distributed-Git-Distributed-Workflows
https://github.com/

Check your SSH key

To push code to GitHub, you will need to authenticate yourself. There are two methods of

authentication: HTTPS username/password or SSH keys. We will use an SSH key in this

course. You can check if you have one already with this command:

$> ls ~/.ssh

id_ed25519 id_ed25519.pub

If you see these files, then you already have an SSH key pair (id_ed25519 is the private

key, id_ed25519.pub is the public key, or it might be id_rsa and id_rsa.pub for

older SSH clients).

Tip

Using an SSH key arguably simplifies authentication. If you don’t have a password on

your private SSH key, you won’t have to enter one when you use Git over SSH either.

If you have a password, you should already have learned to use an SSH agent to

avoid having to enter your password every time. Git will also use the agent to

authenticate.

Create an SSH key

If you don’t have a key yet (or see a “No such file or directory” error), use the ssh-

keygen command to generate a new key pair (press Enter at every prompt to keep the

defaults):

$> ssh-keygen

Generating public/private rsa key pair.

Enter file in which to save the key (/home/.ssh/id_ed25519):

Enter passphrase (empty for no passphrase):

Enter same passphrase again:

Your identification has been saved in /home/.ssh/id_ed25519.

Your public key has been saved in /home/.ssh/id_ed25519.pub.

The key fingerprint is:

SHA256:ULmjUQDN4Snkh0s9u093mcva4cI94cDk name@host

Tip

Read SSH Key Protection again as a reminder on whether or not to set a passphrase.

Copy the SSH key

To authenticate using your SSH key on GitHub, you will need to copy your public key. You

can display it on the CLI with this command:

$> cat ~/.ssh/id_ed25519.pub

ssh-ed25519 AAAAC3NzaC1lZDI1NTE5AAAAIB1TC4yqQYmOARxMMks71fUduU1Og+i name@host

Note

https://archidep.ch/course/104-ssh/#key-protection

The file might be ~/.ssh/id_rsa.pub with older SSH clients that still use RSA as

the default algorithm. DO NOT copy the private key (the ~/.ssh/id_ed25519 or

~/.ssh/id_rsa file).

Add the SSH key to your GitHub account

On GitHub, find the SSH and GPG keys section of your account settings.

Paste your public SSH key there:

(The title of the key is not important. It’s useful when you have multiple keys, to

remember which is which.)

Share changes

Let’s start sharing stuff by pushing, cloning and pulling.

Bob: clone the starting state

If Bob has performed the calculator exercise, he should continue from that repository.

Otherwise, he should clone the Hello GitHub exercise repository as a clean starting state:

$> git clone https://github.com/ArchiDep/hello-github-ex.git

Then move into the repository and delete the remote:

$> cd hello-github-ex

$> git rm origin

https://archidep.ch/course/202-git-branching/slides/
https://github.com/ArchiDep/hello-github-ex

Bob: create a repository on GitHub

Bob should create a repository from the GitHub menu:

Bob: add Alice as a collaborator

For this tutorial, both team members will need push access to the repository. Bob should

go to the repository’s collaborator settings, and add the GitHub username of Alice as a

collaborator:

Alice must then accept the invitation sent by e-mail for the change to be effective.

Bob: copy the remote SSH URL

Bob should copy the SSH URL of the GitHub repository:

Warning

Be sure to select the SSH URL, not the HTTPS URL (which might be selected by

default).

Bob: add the remote to your local repository

Bob should move into his local repository and add the GitHub repository as a remote:

$> cd /path/to/projects/git-branching-or-hello-github-ex

$> git remote add origin git@github.com:bob/github-demo.git

More information

It’s a convention to name the default remote origin.

You can check what remotes are available with git remote :

$> git remote -v

origin git@github.com:bob/github-demo.git (fetch)

origin git@github.com:bob/github-demo.git (push)

More information

The -v (verbose) option makes the git remote command display more

information. Without it, the URLs are not shown.

Bob: push your commits to the shared repository

It’s time for Bob to put the code in the shared GitHub repository. This is done using the

git push command:

$> git push -u origin main

Counting objects: 35, done.

Delta compression using up to 8 threads.

Compressing objects: 100% (33/33), done.

Writing objects: 100% (35/35), 4.16 KiB | 0 bytes/s, done.

Total 35 (delta 14), reused 11 (delta 2)

remote: Resolving deltas: 100% (14/14), done.

To github.com:bob/github-demo.git

 * [new branch] main -> main

The command git push <remote> <branch> tells Git to push the commit pointed to

by <branch> to the remote named <remote> .

The -u option (or --set-upstream) tells Git to remember that you have linked this

branch to that remote.

Bob: remote branches

The commit objects and file snapshots have been pushed (or uploaded) to the GitHub

repository. This includes not only the commit pointed to by main, but also the entire

history of the repository up to that commit.

387f12

mainHEAD

9ab3fd 4f94ba

origin/main

bob

github

main

4f94ba9ab3fd387f12

Note the origin/main branch that has appeared in your local repository. This is a remote-

tracking branch. It tells you where the main branch points to on the origin remote (the

GitHub repository in this case).

Alice: get the remote repository’s SSH URL

Alice can now go to the repository’s page on GitHub (under Bob’s account) and copy the

SSH URL:

Warning

Again, be sure to select the SSH URL, not the HTTPS URL (which might be selected

by default).

Alice: clone the shared repository

Alice can now get a copy of the shared GitHub repository on her machine. This is done

using the git clone command:

$> git clone git@github.com:bob/github-demo.git

Cloning into 'github-demo'...

remote: Counting objects: 35, done.

remote: Compressing objects: 100% (21/21), done.

remote: Total 35 (delta 14), reused 35 (delta 14), pack-reused 0

Receiving objects: 100% (35/35), 4.16 KiB | 0 bytes/s, done.

Resolving deltas: 100% (14/14), done.

$> cd github-demo

The git clone [url] command copies the remote repository to your machine.

Alice: remote branches

The entire history of the project is pulled (or downloaded) from the GitHub repository. Git

will also automatically switch to the main branch in the working directory so you have

something to work from.

387f12

mainHEAD

9ab3fd 4f94ba

origin/main

bob

github

main

4f94ba9ab3fd387f12

alice

mainHEAD

4f94ba9ab3fd387f12

origin/main

Again, Git has created a remote-tracking branch in Alice’s repository, so that you can know

what the current state of the remote is.

Alice: make local changes

Alice thinks that the project’s file names are too long. Let’s fix that:

$> mv addition.js add.js

$> mv subtraction.js sub.js

$> git add .

$> git commit -m "Shorter file names"

Alice: check the state of branches

This is now the state of the shared repository and Alice’s local repository.

github

main

4f94ba9ab3fd387f12

alice

mainHEAD

4f94ba9ab3fd387f12

origin/main

92fb8c

There is a new commit in Alice’s repository that is not in the shared GitHub repository.

Alice: push to the shared repository

Push to update the shared repository:

$> git push origin main

387f12

mainHEAD

9ab3fd 4f94ba

origin/main

bob

github

main

4f94ba9ab3fd387f12 92fb8c

alice

mainHEAD

4f94ba9ab3fd387f12

origin/main

92fb8c

Bob: check the state of branches

This is now the state from Bob’s perspective.

Note that the new commit is in the shared repository (on GitHub) but that the remote-

tracking branch origin/main is not up-to-date in Bob’s repository.

387f12

mainHEAD

9ab3fd 4f94ba

origin/main

bob

github

main

4f94ba9ab3fd387f12 92fb8c

Git does not automatically synchronize repositories. As far as Bob knows looking at

information from his local repository, the main branch still points to 4f94ba in the

shared repository.

Bob: fetch changes from the shared repository

Bob should now get the changes from the shared repository:

$> git fetch origin

remote: Counting objects: 2, done.

remote: Compressing objects: 100% (1/1), done.

remote: Total 2 (delta 1), reused 2 (delta 1), pack-reused 0

Unpacking objects: 100% (2/2), done.

From github.com:bob/github-demo

 4f94ba..92fb8c main -> origin/main

The new commit is now here and the remote-tracking branch has been updated.

387f12

mainHEAD

9ab3fd 4f94ba

origin/main

92fb8c
bob

github

main

4f94ba9ab3fd387f12 92fb8c

alice

mainHEAD

4f94ba9ab3fd387f12

origin/main

92fb8c

However, the local main branch has not moved and the working directory has not been

updated.

Bob: merge fetched changes

Now you can use git merge like in the previous tutorial to bring the changes of

origin/main into main:

$> git merge origin/main

Updating 4f94ga..92fb8c

Fast-forward

 addition.js => add.js | 0

 1 file changed, 0 insertions(+), 0 deletions(-)

 rename addition.js => add.js (100%)

As expected, main has been fast-forwarded to the commit pointed to by origin/main and

the working directory has been updated.

387f12

mainHEAD

9ab3fd 4f94ba

origin/main

92fb8cbob

github

main

4f94ba9ab3fd387f12 92fb8c

alice

mainHEAD

4f94ba9ab3fd387f12

origin/main

92fb8c

Bob’s repository is now up-to-date.

Tip

You can also use git pull [remote] [branch] to save time.

The following command:

$> git pull origin main

Is equivalent to running the two commands we just used:

$> git fetch origin

$> git merge origin/main

Managing conflicting commit histories

Let’s create and fix a conflict.

Bob: fix the bug

Bob now notices that the last change breaks the calculator. This is because the files were

renamed, but the <script> tags in index.html were not updated. Fix that bug, then

commit and push the change:

(Make the fix...)

$> git add index.html

$> git commit -m "Fix bad <script> tags"

$> git push origin main

387f12

mainHEAD

9ab3fd 4f94ba

origin/main

92fb8c 55e12abob

github

main

4f94ba9ab3fd387f12 92fb8c 55e12a

alice

mainHEAD

4f94ba9ab3fd387f12

origin/main

92fb8c

Alice: make other changes

Alice, not having noticed the bug, proceeds to make 2 changes on index.html :

Add an <h2> title before each computation.

Add the defer attribute to the three <script> tags at the bottom to speed up

page loading.

<h2>Addition</h2>

<p id="addition">...</p>

<h2>Subtraction</h2>

<p id="subtraction">...</p>

<script src="calculations.js" defer></script>

<script src="addition.js" defer></script>

<script src="subtraction.js" defer></script>

Alice: push the other changes

Commit and then push the changes:

$> git add index.html

$> git commit -m "Improve layout"

387f12

mainHEAD

9ab3fd 4f94ba

origin/main

92fb8c 55e12abob

github

main

4f94ba9ab3fd387f12 92fb8c 55e12a

alice

mainHEAD

4f94ba9ab3fd387f12

origin/main

92fb8c 102c34

$> git push origin main

Rejected pushes

The push was rejected by the remote repository. Why?

To github.com:bob/github-demo.git

 ! [rejected] main -> main (fetch first)

error: failed to push some refs to 'git@github.com:bob/github-demo.git'

hint: Updates were rejected because the remote contains work that you do

hint: not have locally. This is usually caused by another repository pushing

hint: to the same ref. You may want to first integrate the remote changes

hint: (e.g., 'git pull ...') before pushing again.

hint: See the 'Note about fast-forwards' in 'git push --help' for details.

This is the state of Alice’s repository right now, compared to the state of shared

repository:

github

main

4f94ba9ab3fd387f12 92fb8c 55e12a

alice

mainHEAD

4f94ba9ab3fd387f12

origin/main

92fb8c 102c34

Alice: fetch the changes

Since Git tells Alice that the local copy of the remote repository is out of date, try fetching

those changes:

$> git fetch origin

387f12

mainHEAD

9ab3fd 4f94ba

origin/main

92fb8c 55e12abob

github

main

4f94ba9ab3fd387f12 92fb8c 55e12a

alice

mainHEAD

4f94ba9ab3fd387f12

origin/main

92fb8c 102c34

55e12a

Alice: try to push again

The push is rejected again! Why?

$> git push origin main

To github.com:bob/github-demo.git

 ! [rejected] main -> main (non-fast forward)

error: failed to push some refs to 'git@github.com:bob/github-demo.git'

hint: Updates were rejected because the tip of your current branch is behind

hint: its remote counterpart. Integrate the remote changes (e.g.

hint: 'git pull ...') before pushing again.

hint: See the 'Note about fast-forwards' in 'git push --help' for details.

This is the state of Alice’s and the shared repository right now:

github

main

4f94ba9ab3fd387f12 92fb8c 55e12a

alice

mainHEAD

4f94ba9ab3fd387f12

origin/main

92fb8c 102c34

55e12a

Divergent history

The conflict occurred for the same reason as in the previous tutorial: Bob and Alice’s work

have diverged from a common ancestor (92fb8c in this example).

387f12

mainHEAD

9ab3fd 4f94ba

origin/main

92fb8c 55e12abob

github

main

4f94ba9ab3fd387f12 92fb8c 55e12a

alice

mainHEAD

4f94ba9ab3fd387f12

origin/main

92fb8c 102c34

55e12a

A remote repository will only accept fast-forward pushes by default.

Alice: pull changes from the shared repository

Alice wants to fetch and merge the changes made by Bob. Let’s use the git pull

command:

$> git pull origin main

remote: Counting objects: 3, done.

remote: Compressing objects: 100% (2/2), done.

remote: Total 3 (delta 1), reused 3 (delta 1), pack-reused 0

Unpacking objects: 100% (3/3), done.

From github.com:bob/github-demo

 * branch main -> FETCH_HEAD

 92fb8c..3ff531 main -> origin/main

Auto-merging index.html

CONFLICT (content): Merge conflict in index.html

Automatic merge failed; fix conflicts and then commit the result.

The fetch succeeded, but the merge failed because of a conflict on index.html .

Tip

As we’ve seen before, a pull is equivalent to a fetch followed by a merge .

Alice: check the conflict markers

Alice should take a look at index.html :

<<<<<<< HEAD

 <script src="calculations.js" defer></script>

 <script src="addition.js" defer></script>

 <script src="subtraction.js" defer></script>

=======

 <script src="calculations.js"></script>

 <script src="add.js"></script>

 <script src="sub.js"></script>

>>>>>>> 3ff5311406e73c7d2cc1691f9535214c2543937f

Let’s combine the fix of renaming the files and the defer change, and remove the

conflict markers:

 <script src="calculations.js" defer></script>

 <script src="add.js" defer></script>

 <script src="sub.js" defer></script>

Mark the conflict as resolved and finish the merge:

$> git add index.html

$> git commit -m "Merge origin/main"

Alice: check the state of branches

Now the state of Alice’s local repository is consistent with the state of the shared

repository: the commit pointed to by main is ahead of the commit pointed to by

origin/main .

387f12

mainHEAD

9ab3fd 4f94ba

origin/main

92fb8c 55e12abob

github

main

4f94ba9ab3fd387f12 92fb8c 55e12a

alice

mainHEAD

4f94ba9ab3fd387f12

origin/main

92fb8c 102c34

55e12a

5cee50

Alice: push the changes

The push will be accepted now:

$> git push origin main

387f12

mainHEAD

9ab3fd 4f94ba

origin/main

92fb8c 55e12abob

github

main

4f94ba9ab3fd387f12 92fb8c 55e12a 22b457

102c34

alice

mainHEAD

4f94ba9ab3fd387f12

origin/main

92fb8c 102c34

55e12a

22b457

Bob: pull the changes

Bob can now pull those latest changes to keep up-to-date:

$> git pull origin main

387f12

mainHEAD

9ab3fd 4f94ba

origin/main

92fb8c 55e12a 27fc73

102c34

bob

github

main

4f94ba9ab3fd387f12 92fb8c 55e12a 27fc73

102c34

alice

mainHEAD

4f94ba9ab3fd387f12

origin/main

92fb8c 102c34

55e12a

27fc73

What have I done?

During this exercise, you have learned how to collaborate using Git and GitHub. You’ve

practiced creating repositories, making commits, pushing and pulling changes. You’ve also

explored how to contribute to projects, review changes, and resolve merge conflicts,

gaining hands-on experience with essential tools for team-based software development.

Back to top

