¥ Architecture & Deployment

2025-2026 v0.1.0 on branch main Rev: 03blcdacel4bb0b0720e24be862097b3792214ea

Hello GitHub

Learn how to collaborate on GitHub with Git.

This tutorial is meant to be performed by a group of two. Throughout the rest of the

document, the members of the group will be referred to as Bob and Alice.

The tutorial follows the previous Git branching_ tutorial. If you have done this

demonstration on your computer, you can continue from there, otherwise we will provide

a repository with the correct starting state.

Table of contents

+ Tl Llegend

° ! Create a free GitHub account

. ? Check your SSH key

7 Create an SSH key

* | Copythe SSH key

o ! Add the SSH key to your GitHub account

° !Sharechangg

° ? Bob: clone the starting state

° ! Bob: create a repository on GitHub

Bob: add Alice as a collaborator

Bob: copy the remote SSH URL

Bob: add the remote to your local repository

Bob: push your commits to the shared repository

Bob: remote branches

Alice: get the remote repository’s SSH URL

Alice: clone the shared repository

Alice: remote branches

https://archidep.ch/
https://github.com/ArchiDep/website/tree/main
https://github.com/ArchiDep/website/blob/03b1cdace14bb0b0720e24be862097b3792214ea/course/collections/_course/204-hello-github/exercise.md
https://github.com/
https://git-scm.com/
https://archidep.ch/course/202-git-branching/slides/

Alice: make local changes

Alice: check the state of branches

Alice: push to the shared repository

Bob: check the state of branches

Bob: fetch changes from the shared repository

° ! Bob: merge fetched changes

o | Managing_conflicting_commit histories

« | Bob:fix the bug

° ! Alice: make other changes

« | Alice: push the other changes

* | Rejected pushes

Alice: fetch the changes

Alice: try to push again

Divergent history

Alice: pull changes from the shared repository

Alice: check the conflict markers

Alice: check the state of branches

Alice: push the changes

Bob: pull the changes

e & What have | done?

legend

Parts of this exercise are annotated with the following icons:

I Atask you MUST perform to complete the exercise

? An optional step that you may perform to make sure that everything is working

correctly, or to set up additional tools that are not required but can help you

%

The end of the exercise

8 The architecture of the software you ran or deployed during this exercise.

3 Troubleshooting tips: how to fix common problems you might encounter
You will need

e Git
e A free GitHub account

e AUnix CLI
Recommended reading

e \Version control with Git

e Git branching

e Collaborating with Git

Going further

e Git Branching - Remote Branches

e Distributed Git

I Create a free GitHub account

Both group members should register on GitHub:

https://git-scm.com/
https://github.com/
https://archidep.ch/course/201-git/
https://archidep.ch/course/202-git-branching/slides/
https://archidep.ch/course/203-git-collaborating/slides/
https://git-scm.com/book/en/v2/Git-Branching-Remote-Branches
https://git-scm.com/book/en/v2/Distributed-Git-Distributed-Workflows
https://github.com/

® ® () How people build software - £ X

B C | @ GitHub, Inc. [US] https://github.com *

O Personal Opensource Business Explore Pricing Blog Support

How people
build software

Millions of developers use GitHub to build
personal’projects, support their businesses,

and work together on open source

technologies.

7 Check your SSH key

To push code to GitHub, you will need to authenticate yourself. There are two methods of
authentication: HTTPS username/password or SSH keys. We will use an SSH key in this

course. You can check if you have one already with this command:

$> ls ~/.ssh
id_ed25519 id_ed25519.pub

If you see these files, then you already have an SSH key pair (id_ed25519 is the private
key, id_ed25519.pub is the public key, or it might be id_rsa and id_rsa.pub for
older SSH clients).

© Tip
Using an SSH key arguably simplifies authentication. If you don’t have a password on

your private SSH key, you won’t have to enter one when you use Git over SSH either.

If you have a password, you should already have learned to use an SSH agent to

avoid having to enter your password every time. Git will also use the agent to

authenticate.

7 Create an SSH key

If you don’t have a key yet (or see a “No such file or directory” error), use the ' ssh—
keygen command to generate a new key pair (press Enter at every prompt to keep the

defaults):

$> ssh-keygen

Generating public/private rsa key pair.

Enter file in which to save the key (/home/.ssh/id_ed25519):
Enter passphrase (empty for no passphrase):

Enter same passphrase again:

Your identification has been saved in /home/.ssh/id_ed25519.
Your public key has been saved in /home/.ssh/id_ed25519.pub.
The key fingerprint is:
SHA256:ULmjUQDN4Snkh@s9u@93mcvad4cI94cDk name@host

©V Tip

Read SSH Key Protection again as a reminder on whether or not to set a passphrase.

I Copy the SSH key

To authenticate using your SSH key on GitHub, you will need to copy your public key. You

can display it on the CLI with this command:

$> cat ~/.ssh/id_ed25519.pub
ssh—-ed25519 AAAAC3NzaCllZDIINTES5AAAAIB1TC4ygQYmOARXxMMks71fUduU1l0g+i name@host

(O Note

https://archidep.ch/course/104-ssh/#key-protection

The file might be ~/.ssh/id_rsa.pub with older SSH clients that still use RSA as
the default algorithm. DO NOT copy the private key (the ~/.ssh/id_ed25519 or
~/.ssh/id_rsa file).

| Add the SSH key to your GitHub account

On GitHub, find the SSH and GPG keys section of your account settings.

a + W

Signed in as
[

! Your profile
' Your stars

1 Explore

| Integrations

' Help

1 | Settings

Sign out

Personal settings
Profile

Account

Emails
Motifications

Billing

SSH and GPG keys

Security

Paste your public SSH key there:

Title

My main key]

Add SSH key

(The title of the key is not important. It's useful when you have multiple keys, to

remember which is which.)

I Share changes

Let’s start sharing stuff by pushing, cloning and pulling.

2 Bob: clone the starting state

If Bob has performed the calculator exercise, he should continue from that repository.

Otherwise, he should clone the Hello GitHub exercise repository as a clean starting state:

$> git clone https://github.com/ArchiDep/hello-github-ex.git

Then move into the repository and delete the remote:

$> cd hello—-github-ex

$> git rm origin

https://archidep.ch/course/202-git-branching/slides/
https://github.com/ArchiDep/hello-github-ex

I Bob: create a repository on GitHub

Bob should create a repository from the GitHub menu:

A+
1

Import repository

Mew gist

| New organization

Create a new repository

A repository contains all the files for your project, including the revision history.

Owner Repaository name
. [github-demo v
Great repository names are short and memorable. Need inspiration? How about expert-fiesta.

Description (optional)

Collaborating on GitHub

[+] | Public
Anyaone can see this repository. You choose who can commit.

Private

You choose who can see and commit to this repository.

| Initialize this repository with a README
This will let you immediately clone the repository to your computer. Skip this step if you're importing an existing
repository.

Add .gitignore: None = Add a license: None =

| Bob: add Alice as a collaborator

For this tutorial, both team members will need push access to the repository. Bob should

go to the repository’s collaborator settings, and add the GitHub username of Alice as a

collaborator:
[github-demo @Wwatch- 0 Star 0 YFork ©
Code Issues o Pull requests o Projects o wiki Pulse Graphs {3 Settings
Options Collaborators Push access to the repositary

Collaborators

This repository doesn't have any collaborators yet. Use the form below to add a collaborator.

Branches

Webhooks .
Search by username, full name or email address

Integrations & services You'll only be able to find a GitHub user by their email address if they've chosen to list it publicly. Otherwise, use their
username instead.

Deploy keys

Add collaborator

Alice must then accept the invitation sent by e-mail for the change to be effective.

I Bob: copy the remote SSH URL
Bob should copy the SSH URL of the GitHub repository:

[/ github-demo @ Watch- 0 & Star | © 7 Fork | O

<> Code Issues o Pull requests o Projects o Wiki Pulse Graphs Settings

Quick setup — if you've done this kind of thing before

[d1Setupin Desktop o©r HTTPS| SSH git@github.com: /aithub—demo.git Ea

We recommend every repository include a README, LICENSE, and .gitignore.

Warning

Be sure to select the SSH URL, not the HTTPS URL (which might be selected by
default).

| Bob: add the remote to your local repository

Bob should move into his local repository and add the GitHub repository as a remote:

$> cd /path/to/projects/git-branching-or-hello-github-ex

$> git remote add origin git@github.com:bob/github-demo.git

Wl More information

It's a convention to name the default remote origin.

You can check what remotes are available with git remote :

$> git remote -v
origin git@github.com:bob/github-demo.git (fetch)
origin git@github.com:bob/github-demo.git (push)

Wl More information

The (—v (verbose) option makes the ' git remote command display more

information. Without it, the URLs are not shown.

I Bob: push your commits to the shared repository

It’s time for Bob to put the code in the shared GitHub repository. This is done using the

git push command:

$> git push —-u origin main

Counting objects: 35, done.

Delta compression using up to 8 threads.

Compressing objects: 100% (33/33), done.

Writing objects: 100% (35/35), 4.16 KiB | @ bytes/s, done.
Total 35 (delta 14), reused 11 (delta 2)

remote: Resolving deltas: 100% (14/14), done.
To github.com:bob/github-demo.git

* [new branch] main -> main

The command git push <remote> <branch> tells Git to push the commit pointed to

by <branch> to the remote named <remote> .

The ' —u option (or —-set-upstream) tells Git to remember that you have linked this

branch to that remote.

| Bob: remote branches

The commit objects and file snapshots have been pushed (or uploaded) to the GitHub
repository. This includes not only the commit pointed to by main, but also the entire

history of the repository up to that commit.

main

4 O—=O0 O

bob 387112 9ab3fd 4194ba

origin/main

0O o o O

github 38712 9ab3fd 4f94ba

Note the origin/main branch that has appeared in your local repository. This is a remote-
tracking branch. It tells you where the main branch points to on the origin remote (the

GitHub repository in this case).

I Alice: get the remote repository’s SSH URL

Alice can now go to the repository’s page on GitHub (under Bob’s account) and copy the

SSH URL:

/ github-demo @ Watch~ 0 #Star 0 YFork ©
¢» Code Issues o Pull requests g Projects o Wiki Pulse Graphs Settings
Collaborating on GitHub Edit
m Add topics
D 7 commits I 1 branch > 0 releases A% 1 contributor

Branch: master ~ New pull request Create new file Upload files Find file Clone or download ~

H AlphaHydrae Merge branch “feature-sub’ Clone with S5H @ Use HTTPS
| Use an SSH key and passphrase from account.
Eladdition.js Fix addition YRR
.) L . o . git@github.com: Jgithub-demo [Ea
[E] calculations.js Simplify addition and subtraction implementation
[Elindex.html Simplify addition and subtraction implementation Open in Desktop Download ZIP
[enibdrantine in MAammman + T T TR
Warning

Again, be sure to select the SSH URL, not the HTTPS URL (which might be selected
by default).

I Alice: clone the shared repository

Alice can now get a copy of the shared GitHub repository on her machine. This is done

using the git clone command:

$> git clone git@github.com:bob/github-demo.git

Cloning into ‘'github-demo'...

remote: Counting objects: 35, done.

remote: Compressing objects: 100% (21/21), done.

remote: Total 35 (delta 14), reused 35 (delta 14), pack-reused 0
Receiving objects: 100% (35/35), 4.16 KiB | @ bytes/s, done.
Resolving deltas: 100% (14/14), done.

$> cd github-demo

The git clone [url]

| Alice; remote branches

command copies the remote repository to your machine.

The entire history of the project is pulled (or downloaded) from the GitHub repository. Git

will also automatically switch to the main branch in the working directory so you have

something to work from.

bob

github

alice

main

O

387112

()
/

9ab3fd

O

4f94ba

origin/main

main

O

387112

()
N\

9ab3fd

O

4f94ba

5 [FON main

O

387112

()
N\

9ab3fd

O

4f94ba

origin/main

Again, Git has created a remote-tracking branch in Alice’s repository, so that you can know

what the current state of the remote is.

I Alice: make local changes

Alice thinks that the project’s file names are too long. Let’s fix that:

$> mv addition.js add.js
$> mv subtraction.js sub.js
$> git add .

$> git commit -m "Shorter file names"

| Alice: check the state of branches

This is now the state of the shared repository and Alice’s local repository.

-~

Qo o 0o

github 38712 9ab3fd 494ba
5|00 main
alice 387112 9ab3fd 4f94ba 92fb8c
origin/main

There is a new commit in Alice’s repository that is not in the shared GitHub repository.

I Alice: push to the shared repository

Push to update the shared repository:

$> git push origin main

main
a1 O—O0O——O0

bob 38712 9ab3fd 4f94ba

origin/main

Qoo o 0O

github 387f12 9ab3fd 4f94ba 92fb8c

[N main

o O—0O0—0 O
/ /
alice 387112 Q9ab3fd 4194ba 92fb8c

origin/main

| Bob: check the state of branches

This is now the state from Bob’s perspective.

Note that the new commit is in the shared repository (on GitHub) but that the remote-

tracking branch origin/main is not up-to-date in Bob’s repository.

main
1 O—O O

bob 38712 9ab3fd 4194ba

origin/main

QDo o o O

github 3g7f1) 9ab3fd 4f94ba 92fb8c

Git does not automatically synchronize repositories. As far as Bob knows looking at
information from his local repository, the main branch still points to ' 4f94ba in the

shared repository.

I Bob: fetch changes from the shared repository

Bob should now get the changes from the shared repository:

$> git fetch origin
remote: Counting objects: 2, done.
remote: Compressing objects: 100% (1/1), done.
remote: Total 2 (delta 1), reused 2 (delta 1), pack-reused 0
Unpacking objects: 100% (2/2), done.
From github.com:bob/github-demo
4f94ba..92fb8c main —> origin/main

The new commit is now here and the remote-tracking branch has been updated.

: main origin/main
FO—0—0—0
bob NN /
387112 9ab3fd 4f94ba 92fb8c

Qo o o 0O

github 3g7f12 9ab3fd 4194ba 92fh8c

5|00 main

= O—0—™O0 O

alice 387112 9ab3fd 4194ba 92fb8c

origin/main

However, the local main branch has not moved and the working directory has not been

updated.

| Bob: merge fetched changes

Now you can use git merge like in the previous tutorial to bring the changes of

origin/main into main:

$> git merge origin/main

Updating 4f94ga..92fb8c

Fast-forward

addition.js => add.js | @

1 file changed, @ insertions(+), @ deletions(-)

rename addition.js => add.js (100%)

As expected, main has been fast-forwarded to the commit pointed to by origin/main and

the working directory has been updated.

origin/main

O

/ /
bob 387f12 9ab3fd 4£94ba 927b8c

main

Qo o o 0O

github 371> 9ab3fd 4f94ba 92fb8c

main
O—0O—0 O

alice 387112 9ab3fd 4194ba 92fb8c

origin/main

Bob’s repository is now up-to-date.

¥ Tip

You can also use git pull [remote] [branch] to save time.

The following command:

$> git pull origin main

Is equivalent to running the two commands we just used:

$> git fetch origin

$> git merge origin/main

I Managing conflicting commit histories

Let’s create and fix a conflict.

I Bob: fix the bug

Bob now notices that the last change breaks the calculator. This is because the files were

renamed, but the <script> tagsin index.html were not updated. Fix that bug, then

commit and push the change:

(Make the fix...)
$> git add index.html
$> git commit -m "Fix bad <script> tags"

$> git push origin main

IF\ON main

bob 387f12 9ab3fd 4f94ba 92fb8c 55el12a
origin/main
O main
github 3g7f12 9ab3fd 4f94ba 92fb8c 55e12a

main
O—O—0O—0

alice 387f12 9ab3fd 4f94ba 92fb8c

origin/main

I Alice: make other changes

Alice, not having noticed the bug, proceeds to make 2 changes on ' index.html :

Add an <h2> title before each computation.

Add the defer attribute to the three ' <script> tags at the bottom to speed up
page loading.

<h2>Addition</h2>

<p id="addition">...</p>

<h2>Subtraction</h2>

<p id="subtraction"'>...</p>

<script src="calculations.js" defer></script>

<script src="addition.js" defer></script>

<script src="subtraction.js" defer></script>

I Alice: push the other changes

Commit and then push the changes:

$> git add index.html

$> git commit -m "Improve layout"

main

— OO0

bob 387f12 9ab3fd 4f94ba

Qooo

github 387f12 9ap3fd 4f94ba

1 OO0

alice 387f12 9ab3fd 4f94ba

92fb8c 55el2a
origin/main
main
92fb8c 55el2a
IFON main
92fb8c 102c34
origin/main

$> git push origin main

| Rejected pushes

The push was rejected by the remote repository. Why?

To github.com:bob/github-demo.git

I [rejected]

main —> main

(fetch first)

error: failed to push some refs to 'git@github.com:bob/github-demo.git’

hint: Updates were rejected because the remote contains work that you do

hint: not have locally. This is usually caused by another repository pushing

hint: to the same ref. You may want to first integrate the remote changes

hint: (e.g., 'git pull ...

') before pushing again.

hint: See the 'Note about fast-forwards' in 'git push —-help' for details.

This is the state of Alice’s repository right now, compared to the state of shared

repository:
P
main
—0—O0—0O0—0O
. / _/ _/
github 387f12 9ab3fd 4f94ba 92fb8c 55e12a
main
3 0—0—0—0—0
N4 _/ _/
alice 38712 9ab3fd 4f94ba 92fbh8c 102c34
origin/main
L

Alice: fetch the changes

Since Git tells Alice that the local copy of the remote repository is out of date, try fetching

those changes:

$> git fetch origin

[N main

-1 O—0O O

bob 387112 9ab3fd 4f94ba 92fbh8c 55e12a

O

O

origin/main

main

O—0O—C0—0

github 387f12 9ab3fd 4f94ba 92fb8c 55e12a

O

3 [FON main

O—0O—C0O——0

N 387f12 9ab3fd 4f94ba 92fb8¢ 102c34

O

alice origin/main

g

55el2a

Alice: try to push again

The push is rejected again! Why?

$> git push origin main
To github.com:bob/github-demo.git
I [rejected] main —> main (non-fast forward)
error: failed to push some refs to 'git@github.com:bob/github-demo.git’
hint: Updates were rejected because the tip of your current branch is behind

hint: its remote counterpart. Integrate the remote changes (e.g.

hint: 'git pull ...') before pushing again.
hint: See the 'Note about fast-forwards' in 'git push —-help' for details.

This is the state of Alice’s and the shared repository right now:

0o ooo0

github 387f12 9ab3fd 4f94ba 92fb8c 55e12a

O

main
O—0—0—C—0
. _/ o/
387112 9ab3fd 4f94ba 92fb8c 102c34
alice origin/main

C

55el2a

| Divergent history

The conflict occurred for the same reason as in the previous tutorial: Bob and Alice’s work

have diverged from a common ancestor (92fb8c in this example).

5[0 main

= O O0O00—0
N N _/
bob 387112 9ab3fd 4f94ba 92fb8c 55e12a
origin/main
main
O—O0—0—0—0
) N4 / _/
github 3g7¢1> 9ab3fd 4¥94ba 92fb8¢ 55e12a

gD main

O—0O—0O—0)

| 387112 9ab3fd 4194ba 92fb8c 102c34

O

alice origin/main

g

55e12a

A remote repository will only accept fast-forward pushes by default.

I Alice: pull changes from the shared repository

Alice wants to fetch and merge the changes made by Bob. Let’s use the git pull

command:

$> git pull origin main

remote: Counting objects: 3, done.

remote: Compressing objects: 100% (2/2), done.

remote: Total 3 (delta 1), reused 3 (delta 1), pack-reused 0
Unpacking objects: 100% (3/3), done.

From github.com:bob/github-demo

* branch main —> FETCH_HEAD
92fb8c..3ff531 main —-> origin/main

Auto-merging index.html

CONFLICT (content): Merge conflict in index.html

Automatic merge failed; fix conflicts and then commit the result.

The fetch succeeded, but the merge failed because of a conflict on index.html .

©V Tip

As we've seen before,a pull is equivalenttoa fetch followed bya merge .

I Alice: check the conflict markers

Alice should take a look at index.html :

<<<<<<< HEAD
<script src="calculations.js" defer></script>
<script src="addition.js" defer></script>

<script src="subtraction.js" defer></script>

<script src="calculations.js"></script>
<script src="add.js"></script>
<script src="sub.js"></script>

>>>>>>> 3f15311406€73c7d2cc169119535214¢c2543937f

Let’s combine the fix of renaming the files and the ' defer ' change, and remove the

conflict markers:

<script src="calculations.js" defer></script>
<script src="add.js" defer></script>

<script src="sub.js" defer></script>

Mark the conflict as resolved and finish the merge:

$> git add index.html

$> git commit -m "Merge origin/main"

I Alice; check the state of branches

Now the state of Alice’s local repository is consistent with the state of the shared

repository: the commit pointed to by main is ahead of the commit pointed to by

origin/main .
P
HEAD ma1n
bob 387f12 9ab3fd 4f94ba 92fb8c 55el2a
origin/main
0 main
github 387f12 9ab3fd 4f94ba 92fh8c 55e12a
3|00 main
| 387112 9ab3fd 4f94ba 92fb8c 102c34 5cee50
alice orlgln/maln

55e12a

I Alice: push the changes

The push will be accepted now:

$> git push origin main

main
: :::: :::: :::: :::: ::::

bob 387f12 9ab3fd 4f94ba 92fb8c 55el2a

origin/main

main

()
/

55el2a

22b457

O 387f12 9ab3fd 4f94ba 92fb8c

github

102c34

main

()
_/

102c34

| 387f12 9ab3fd 4f94ba 92fb8c

22b457

origin/main

alice

55e12a

I Bob: pull the changes

Bob can now pull those latest changes to keep up-to-date:

$> git pull origin main

5|00 main

OO0

| | 387f12 9ab3fd 4f94ba 92fb8 55e12a 27fc73
Sl origin/main
102c34
main

387f12 9ab3fd 4f94ba 92fb8 27fc73

QO—OO“

github
102c34
| | 387f12 9ab3fd 4f94ba 92fb8 102c34 27fc73
STl origin/main

55e12a

¥=What have | done?

During this exercise, you have learned how to collaborate using Git and GitHub. You've
practiced creating repositories, making commits, pushing and pulling changes. You’ve also
explored how to contribute to projects, review changes, and resolve merge conflicts,

gaining hands-on experience with essential tools for team-based software development.

T Backto top

