
Architecture & Deployment

2025-2026 v0.1.0 on branch main Rev: 03b1cdace14bb0b0720e24be862097b3792214ea

Unix Basics

Learn the basics of Unix and Unix-like operating systems like Linux, and how to manage

them from the command line.

File system

Case-sensitivity

File hierarchy

Inspecting volumes

Common Unix directories

Unix file types

Unix users

User access

Permissions

User categories

Checking file permissions

Administrative access

The sudo command

The sudoers file

The su command

Performing tasks as another user

Performing administrative tasks as root

User database files

The /etc/passwd file

The /etc/group file

The shadow files

User management

Types of users

Table of contents

https://archidep.ch/
https://github.com/ArchiDep/website/tree/main
https://github.com/ArchiDep/website/blob/03b1cdace14bb0b0720e24be862097b3792214ea/course/collections/_course/404-unix-basics/subject.md

Note

In many respects, the basics of Unix are the same for the original Unix operating

system and Unix-like operating systems derived from Unix like Linux or macOS. From

here on, when we refer to “Unix”, we will in fact be talking about all Unix and Unix-

like systems in general.

File system

The file system controls how data is stored and retrieved. Without it, information on a

storage medium such as a hard drive would be one large body of data, with no way to tell

where one piece of information stops and the next begins.

Various file systems exist:

Creating a login user

Checking the created login user

Creating a system user

Checking the created system user

Difference between login and system users

Other useful user management commands

Permission management

The chown command

The chmod command

Symbolic mode

Using symbolic mode

Octal mode

Using octal mode

Welcome to the future

References

Operating system or device type Common file systems

Linux ext2, ext3, ext4

macOS HFS, APFS

Windows NTFS

USB FAT, exFAT

Case-sensitivity

One of the differences between file systems is how they would treat these file names:

a-file.txt

A-file.txt

A-fIlE.txt

A-FILE.txt

When you use macOS or Windows, your file system is probably HFS, APFS or NTFS. These

file systems are case-insensitive, meaning that the four file names above represent the

same file. You cannot create both a-file.txt and A-FILE.txt in the same

directory. As far as the file system is concerned, that’s the same file.

When you use Linux, your file system is probably in the Extended File System (ext) family.

It is a case-sensitive file system. The four names above represent 4 different files.

It is important to know this difference when you are transferring files between different

file systems.

File hierarchy

In Unix systems, the file system is said to be rooted, meaning that there is always one

root, denoted by the path / .

https://en.wikipedia.org/wiki/Hierarchical_File_System_(Apple)
https://en.wikipedia.org/wiki/Apple_File_System
https://en.wikipedia.org/wiki/NTFS
https://en.wikipedia.org/wiki/Extended_file_system

Separate volumes such as disk partitions, removable media and network shares belong to

the same file hierarchy (unlike Windows for example, where each drive has a letter that is

the root of its file system tree).

Such volumes can be mounted on a directory, causing the volume’s file system tree to

appear as that directory in the larger tree.

Inspecting volumes

The df (disk free) shows you all volumes and the available space on each of them (the

-h option displays size in a human-readable format instead of the raw number of

bytes):

$> df -h

Filesystem Size Used Avail Use% Mounted on

tmpfs 99M 608K 98M 1% /run

/dev/sda1 9.7G 1.4G 8.3G 15% /

tmpfs 493M 0 493M 0% /dev/shm

tmpfs 5.0M 0 5.0M 0% /run/lock

tmpfs 493M 0 493M 0% /sys/fs/cgroup

/dev/sdb1 50G 19G 28G 41% /network-drive

You can see that there is only one root (/), and that all other volumes are mounted

somewhere in the file hierarchy.

For example, the last line represents a network drive mounted under the /network-

drive directory.

Mounted volumes are defined in the /etc/fstab file (file systems table).

Common Unix directories

Directory Description

/bin Fundamental binaries like ls or cp

https://en.wikipedia.org/wiki/Fstab

Directory Description

/boot Files required to successfully boot

/dev Devices, i.e. file representations of (pseudo-)peripherals

/etc System-wide configuration files

/home User home directories

/lib Shared libraries needed by programs in /bin

/media Default mount point for removable devices (USB, etc)

/opt Locally installed software

/root Home directory of the root superuser

/sbin System binaries (for system administration)

/tmp Temporary files not expected to survive a reboot

/usr Non-system-critical executables, libraries and resources

/var Variable files (e.g. lock/log files, databases)

Note

From Unix Filesystem Conventional Directory Layout.

Unix file types

““Everything is a file.””

Unix systems have regular files and directories like most other systems. But in addition to

these, it represents various other things as files:

https://en.wikipedia.org/wiki/Unix_filesystem#Conventional_directory_layout
https://en.wikipedia.org/wiki/Everything_is_a_file

Type Description

File A regular file

Directory A directory containing any number of files

Symbolic link A reference to another file

Named pipe A connector from the output of one process to the input of another

Socket A bidirectional endpoint for inter-process communication

Device Representations of physical or logical peripherals (e.g. hard drive)

Unix users

Unix operating systems like Linux are multi-user systems, meaning that more than one

user can have access to the system at the same time.

A user is any entity that uses the system. This may be:

A person, like Alice or Bob

A system service, like a MySQL database or an SSH server

A Unix system maintains a list of user accounts representing these people and system

services, each with a different name such as alice , bob or sshd . Each of these

user accounts is also identified by a numerical user ID (or UID).

Note

Note that one person may have multiple user accounts on a Unix system, as long as

they each have a different name.

https://en.wikipedia.org/wiki/Symbolic_link
https://en.wikipedia.org/wiki/Named_pipe
https://en.wikipedia.org/wiki/Unix_domain_socket
https://en.wikipedia.org/wiki/Device_file

User access

Managing users is done for the purpose of security by limiting access in certain ways,

such as file permissions.

The superuser, named root , has complete access to the system and its configuration. It

is intended for administrative use only.

Unix also has the notion of groups. Much like a user account, a group is identified by a

name and by a numerical group ID (or GID). Each user belongs to a main group, and can

also be added to other groups, which grants that user all privileges assigned to each

group.

A Unix system usually creates a main group for each user, with the same name as the

user. For example, user alice has the alice group as its main group.

This provides a quick way of giving bob access to alice ’s files by adding him to the

alice group, if necessary.

Permissions

Someone who logs in on a Unix system can use any file their user account is permitted to

access. The system determines whether or not a user or group can access a file based on

the permissions assigned to it.

There are three different permissions for files and directories. They are represented by

one character:

Permission For files For directories

r Read the contents of the file List the directory

w Write to the file (modify it) Create or delete files in the directory

x Execute the file (if it’s a binary or a
script)

Traverse the directory (to access a
subdirectory)

The symbol - (a hyphen) indicates that no access is permitted.

User categories

Each of the three permissions are assigned to three different categories of users:

Category Description

owner The user who owns the file

group The group that owns the file (any user in that group)

other Any other user with access to the system

Checking file permissions

When you run the ls command with the -l option (long format), you can see more

information about files, including their type and permissions:

$> ls -l

drwxr-xr-x 2 root root 4096 Sep 7 12:16 some-directory

-rwxr-x--- 1 root vip 755 Jan 18 2018 some-executable

-rw-r----- 1 bob bob 321 Jan 18 2018 some-file

lrwxrwxrwx 1 bob bob 39 Jan 18 2018 some-link -> some-file

Column 1 represents the permissions assigned to the file, while columns 3 and 4

represent their ownership. The first 10-letter column can be separated into one letter for

the type of file, and three 3-letter groups for owner, group and other permissions

respectively:

TYPE OWNER PERM GROUP PERM OTHER PERM OWNER GROUP

d rwx r-x r-x root root ... some-directory

- rwx r-x --- root vip ... some-executable

- rw- r-- --- bob bob ... some-file

l rwx rwx rwx bob bob ... some-link -> some-file

Tip

The file types you will most often handle are - for files, d for directories and l

for links. There are others like p for named pipes, s for sockets and b or c

for block or character device files, but they are outside the scope of this course.

Administrative access

Many administrative tasks such as installing packages, managing users or changing file

permissions can only be performed by the root user.

If you have the root user’s password (or an authorized public key), you can log in as

root directly. But you should avoid it as often as possible.

https://en.wikipedia.org/wiki/Unix_file_types
https://en.wikipedia.org/wiki/Named_pipe
https://en.wikipedia.org/wiki/Named_pipe
https://en.wikipedia.org/wiki/Named_pipe
https://en.wikipedia.org/wiki/Unix_domain_socket
https://en.wikipedia.org/wiki/Unix_domain_socket
https://en.wikipedia.org/wiki/Device_file

It is dangereous to log in as root . One wrong move and you could irreversibly damage

the system. For example:

Delete a system-critical file or files

Change permissions on system-critical executables

Lock yourself out of the system (e.g. by disabling SSH on a server)

The sudo command

The sudo command (which means “superuser do”) offers another approach to give

users administrative access.

When trusted users precede an administrative command with sudo , they are prompted

for their own password. Once authenticated, the administrative command is executed as if

by the root user.

$> ls -la /root

ls: cannot open directory '/root': Permission denied

$> sudo ls -la /root

[sudo] password for jde:

drwx------ 4 root root 4096 Sep 12 14:53 .

drwxr-xr-x 24 root root 4096 Sep 12 14:44 ..

-rw------- 1 root root 137 Sep 11 09:51 .bash_history

-rw-r--r-- 1 root root 3106 Apr 9 11:10 .bashrc

...

More information

Only trusted users can use sudo . Unauthorized usage will be reported. The

relevant logs can be checked with sudo journalctl $(which sudo) (if you are

a trusted user).

https://xkcd.com/838/

The sudoers file

The /etc/sudoers file defines which users are trusted to use sudo . This is a classic

example (the basic syntax is described here):

Defaults env_reset

Defaults secure_path="/usr/local/sbin:/usr/local/bin:..."

root ALL=(ALL:ALL) ALL

%admin ALL=(ALL) ALL

%sudo ALL=(ALL:ALL) ALL

This configuration allows members of the sudo group to execute any command (i.e.

they are trusted users).

The su command

The su command (which means “switch user”) is also a common administrative tool. As

its name indicates, it can be used to log in as another user. If you are a trusted sudoer, you

can use it to become another user:

$> whoami

bob

$> ls -la /home/alice

ls: cannot open directory '/home/alice': Permission denied

NEVER EVER edit this file by hand, as you will break the sudo command if you

introduce syntax errors into the file. Use the visudo command which will not

let you save unless the file is valid.

With these defaults settings common to most Unix systems, you can simply add

a user to the sudo group to make them trusted sudo users.

http://toroid.org/sudoers-syntax

*$> sudo su -l alice

[sudo] password for bob:

$> whoami

alice

More information

The -l option of the su command makes sure you get a login shell, i.e. an

environment similar to what you get when actually logging in. If you don’t use it, you

will have a minimal shell environment that might be missing some things.

Performing tasks as another user

The previous su command opens a new shell in which you are logged in as alice .

You can do whatever you need to do with the files accessible only to alice , then go

back to your previous shell with exit :

$> ls -la /home/alice

total 20

drwxr-x--- 2 alice alice 4096 Sep 12 16:35 .

drwxr-xr-x 6 root root 4096 Sep 12 16:35 ..

-rw-r--r-- 1 alice alice 220 Apr 4 18:30 .bash_logout

...

$> echo foo > ~/bar.txt

$> cat /home/alice/bar.txt

foo

$> exit

$> whoami

bob

Performing administrative tasks as root

You can also use the su command to log in as root . You can perform any necessary

administrative tasks without sudo (since you are root), then again go back to your

previous shell with exit :

$> sudo su -l root

$> whoami

root

$> journalctl $(which sudo)

...

$> exit

$> whoami

bob

User database files

These files define what user accounts and groups are available on a Unix system:

File Contents

/etc/passwd List of user accounts, as well as their primary group, home directory and default
shell (it originally also contained user passwords, hence the name)

/etc/shadow Hashes of user passwords (more secure than storing them in word-readable
/etc/passwd)

/etc/group List of groups and their members

As mentioned before, be careful not to break the system when you are root .

File Contents

/etc/gshadow Hashes of group passwords (optional), group administrators

You should never edit these files by hand.

Unix systems provide various system administration commands for this purpose, such as

useradd , passwd and groupadd for Linux.

The /etc/passwd file

Each line in /etc/passwd defines a user account, with data separated by semicolons:

jde:x:500:500:jde:/home/jde:/bin/bash

Username (jde) - The name of the user account (used to log in)

Password (x) - User password (or x if it is stored in /etc/shadow)

User ID (UID) (500) - The numerical equivalent of the username

Group ID (GID) (500) - The numerical equivalent of the user’s primary group name

(often the same as the UID for most users, on a Unix system with default settings)

GECOS (jde) - Historical field used to store extra information (usually the user’s

full name)

Home directory (/home/jde) - Absolute path to the user’s home directory

Shell (/bin/bash) - The program automatically launched whenever the user logs

in (e.g. on a terminal or through SSH)

Tip

Changing the shell can be used to prevent some users, like system users, from

logging in (e.g. by using /bin/false or /usr/sbin/nologin).

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/4/html/Introduction_To_System_Administration/s2-acctsgrps-files.html

The /etc/group file

Each line in /etc/group defines a group, also semicolon-separated:

vip:x:512:bob,eve

Group name (vip) - The name of the group

Group password (x) - Optional group password (or x if the password is stored in

/etc/gshadow); if specified, allows users not part of the group to join it with the

correct password

Group ID (GID) (512) - The numerical equivalent of the group name

Member list (bob,eve) - A comma-separated list of the users belonging to the

group

The shadow files

Both /etc/passwd and /etc/group must be readable by anyone on a Unix system,

because they are used by many programs to perform the translation from username to

UID and from group name to GID.

It is therefore bad practice to store passwords in these files, even encrypted or hashed.

Any user might copy them and attempt a brute-force attack (which could be done on a

separate, dedicated infrastructure).

Therefore, the corresponding shadow files exist:

/etc/shadow stores password hashes for user accounts, and other security-related

data such as password expiration dates.

/etc/gshadow stores password hashes for groups, and other security-related data

such as who is the group administrator.

These files are only readable by the root user (or any user that belongs to the root

or shadow groups).

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/4/html/Introduction_To_System_Administration/s3-acctspgrps-group.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/4/html/Introduction_To_System_Administration/s3-acctsgrps-shadow.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/4/html/Introduction_To_System_Administration/s3-acctsgrps-gshadow.html

User management

The following commands can be used to create, modify and delete users:

Command Purpose

useradd Create a user account (and by default, a corresponding group)

usermod Modify an existing user account

passwd Change (or set) a user’s password

userdel Delete a user account

deluser Friendlier frontend to the userdel command. Delete a user account or remove a

user from a group

groupadd Create a new group

groupmod Modify an existing group

groupdel Delete a group

Use man <command> to read their manual, e.g. man useradd .

Note

Note that these commands are specific to Ubuntu. They might differ slightly in other

Linux distributions or other Unix systems.

Types of users

As we said at the beginning of this section, a user can be a login user representing a

person or a system user generally representing a service.

https://www.ubuntu.com/

You may wonder why we even need system users? In Unix systems, users are the

fundamental access control mechanism, so we need system users to limit the permissions

of people using the system, but also of services running on that system. For example:

Alice should not be able to access Bob’s files without his permission, and vice-versa.

A database server like MySQL needs to access some files for storage, but it doesn’t

need to access Alice’s or Bob’s files. It also doesn’t need to be able to log in since it’s

a service and not a person.

Creating a login user

To create a login user (e.g. a user that can be used by an actual person to log in to the

machine), you will need to use the useradd and passwd commands:

$> sudo useradd -m -s /bin/bash jde

$> sudo passwd jde

Enter new UNIX password:

Retype new UNIX password:

passwd: password updated successfully

The -m option to the useradd command instructs it to also create a home directory

for the user, which by default will be /home/jde in this case.

The -s option specifies the user’s login shell. Since it defaults to a simple Bourne shell

(/bin/sh) on most systems, in this example we use the more advanced Bash shell

(/bin/bash) for the user’s convenience.

Note

It is possible to give an encrypted password directly to the useradd command

with the -p option instead of using passwd , but it’s bad practice because

running commands can be seen by other users with ps .

https://en.wikipedia.org/wiki/Bourne_shell
https://en.wikipedia.org/wiki/Bash_(Unix_shell)

Checking the created login user

You can see the newly created user (and corresponding group) by looking at the last line

of the relevant user database files:

$> tail -n 1 /etc/passwd

jde:x:1004:1004::/home/jde:/bin/bash

$> tail -n 1 /etc/group

jde:x:1004:

Creating a system user

To create a system user (e.g. a technical user that will need to run an application or

service, but does not need to log in), the useradd command is sufficient:

$> sudo useradd --system -s /usr/sbin/nologin myapp

The user is created a bit differently with the --system option. Notably, the UID is

chosen in a different range, to help quickly differentiate system users from login users.

Tip

You can also add the -m (home) option if necessary. Some applications or services

might expect the user to have a home directory.

The tail command displays the last 10 lines of a file. With the -n option

(number) set to 1, it only displays the last line.

Note that on a typical Linux system, regular users will have UIDs starting at

1000 and incremented every time a new user is created. This is defined by the

UID_MIN and UID_MAX options in the /etc/login.defs file.

Checking the created system user

Check the user database files again:

$> tail -n 1 /etc/passwd

myapp:x:999:999::/home/myapp:/usr/sbin/nologin

$> tail -n 1 /etc/group

myapp:x:999:

You can try to use su to try to switch to that user. It won’t work:

$> sudo su -l myapp

No directory, logging in with HOME=/

This account is currently not available.

Tip

If you really need to log in as that user for administative purposes, the su

command allows you to change the shell. For this example, the command would be

sudo su -l -s /bin/bash myapp .

Note that a home directory is configured even if it wasn’t created. This is not an

issue.

System users use a different UID range by default, specified by the

SYS_UID_MIN and SYS_UID_MAX options in the /etc/login.defs file.

On Ubuntu, for example, it will start at 999 and be decremented by 1 for each

new user.

Difference between login and system users

There is no fundamental difference between a login and a system user. It’s simply an

organizational distinction to make life easier for system administrators.

Both login and system users are stored in the same user database files with the

same format.

A login user can log in because it has a password and a login shell.

A system user has no password and no login shell and therefore cannot log in.

A system user has a UID in a different range by default. (This difference can be

utilized by the GUI, for example to omit system users when populating a username

dropdown list at login.)

Tip

You can even transform a login user into a system user and vice-versa through

judicious use of the usermod command.

Other useful user management commands

Here’s a few command examples for common administrative tasks:

Example Effect

usermod -a -G vip jde Add (append) user jde to group vip .

deluser jde vip Remove user jde from group vip .

userdel -r jde Remove user jde and its home directory

passwd --lock jde Lock the password for user jde (note that it may still be
possible for that user to log in using other authentication
methods, such as a public key)

Example Effect

usermod --shell
/usr/sbin/nologin jde

Lock user jde out of the system (note that this will not
disconnect the user if already connected, but it prevents future
logins)

Permission management

The following commands can be used to change the permissions or ownership of files:

Command Purpose

chmod Change the mode (another name for file permissions) of a file or files

chown Change the owner (and optionally the group) of a file or files

Use man <command> to read their manual, e.g. man chmod .

The chown command

The chown command is quite simple to use. The following command changes the

owner of file.txt to alice :

$> sudo chown alice file.txt

The following command changes the owner of file.txt to bob and its group to

vip :

$> sudo chown bob:vip file.txt

You can also recursively (with the -R option) change the owner and group of a

directory and all its files:

https://linux.die.net/man/1/chown

$> sudo chown -R bob:bob /home/bob

The chmod command

The chmod command is used to change file permissions and is a little more

complicated. It has two syntaxes to specify which permissions you want: symbolic mode

and octal mode.

With symbolic mode, you specify which permissions you want with letters similar to those

shown by ls -l , and you have more control over which specific permissions you want

to add or remove:

$> sudo chmod ug+x script.sh

$> sudo chmod a-w readonly.txt

$> sudo chmod o-rwx secret.txt

With octal mode, you specify all of a file’s permissions at once. You cannot add or remove

a specific permission without also setting the others:

$> sudo chmod 755 executable.sh

$> sudo chmod 640 secret.txt

Symbolic mode

The symbolic syntax of the chmod command is:

Be EXTREMELY CAREFUL when changing ownership recursively. Changing the

ownership of system-critical files may break your system. Make sure you typed

the correct path.

https://linux.die.net/man/1/chmod

chmod [reference...][operator][permission...] file

Specify one or more references ([reference...]) to select user categories:

Reference Category Description

u User The user who owns the file (the owner)

g Group The group that owns the file

o Others Any other user with access to the system

a All All three of the above, same as ugo

Use one of the available operators ([operator]):

Operator Description

+ Add permissions to the specified category of users

- Remove permissions from the specified category of users

= Set the exact permissions for the specified category of users

Using symbolic mode

The symbolic syntax basically allows you to specify:

What category or categories of users you want to change permissions for (u , g ,

o or a)

What kind of change you want to do (+ , - or =)

What permission(s) you want to change (r for read, w for write or x for

execution/traversal)

For example, the following command adds read and write permissions to u (the owner

of the file):

$> sudo chmod u+rw file.txt

The following command sets the permissions for g (the group of the file) to read and

execute:

$> sudo chmod g=rx file.txt

Octal mode

Unix file permissions can be represented in octal (base-8) notation:

Octal Permissions Text Binary

7 read, write and execute rwx 111

6 read and write rw- 110

5 read and execute r-x 101

4 read only r-- 100

3 write and execute -wx 011

2 write only -w- 010

1 execute only --x 001

0 none --- 000

You can represent an entire file’s permissions with 3 octal digits:

755 is equivalent to rwxr-xr-x .

https://en.wikipedia.org/wiki/File_system_permissions#Numeric_notation

751 is equivalent to rwxr-x--x .

640 is equivalent to rw-r----- .

Using octal mode

The octal syntax does not allow you to make a granular change to a specific permission

(e.g. u+x). However, it does allow you to easily change an entire file’s permissions in one

command.

For example, the following command sets permissions rwxr-xr-x to script.sh :

$> sudo chmod 755 script.sh

The following command sets permissions rw-r----- to secret.txt :

$> sudo chmod 640 secret.txt

Welcome to the future

Some of the commands mentioned in this course may be older than you, although they

are regularly updated. But new command line tools are also being developed today:

The duf command is a modern alternative to df to list free disk space, written

in Rust, a modern systems programming language.

References

Red Hat Enterprise Linux - Introduction to System Administration

Red Hat Enterprise Linux - Security Guide

https://github.com/muesli/duf
https://www.rust-lang.org/
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/4/html/Introduction_To_System_Administration/
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/4/html/Security_Guide/

Back to top

