¥ Architecture & Deployment

2025-2026 v0.1.0 on branch main Rev: 03blcdace14bb0b0720e24be862097b3792214ea

Unix Processes

Learn about processes in Unix operating systems, as well as how to manage them and

make them communicate.

Table of contents

e What is a process?

e Unix processes

e Process ID

e What is a process identifier?

e Parent processes

e The ps command

¢ Listing all processes

e Process tree

e Running_more processes

e Sleeping_process

e Other monitoring commands

o Welcome to the future

e Exit status

e What is an exit status?

e Retrieving the exit status in a shell

o Retrieving_the exit status in code

°* Meaning of exit statuses

* Signals

e What is a signal?

e Common Unix signals

e The terminal interrupt signal (SIGINT)

e The kill command

 Trapping signals

https://archidep.ch/
https://github.com/ArchiDep/website/tree/main
https://github.com/ArchiDep/website/blob/03b1cdace14bb0b0720e24be862097b3792214ea/course/collections/_course/406-unix-processes/subject.md

e TheKILL signal

e Unix signals in the real world

Standard streams

e The good old days

e Unix streams

e stdin, stdout & stderr

e Streams, the keyboard, and the terminal

e Stream inheritance

e Optional input stream

e Optional output stream

e Stream redirection

e Redirect standard output stream

e How to use standard output redirection

e Redirect standard error stream

e Both standard output and error streams

e Redirect standard output stream (curl)

e Redirect standard error stream (curl)

e Redirect both standard output and error streams (curl),

e (Combine standard output and error streams (curl)

o Discard an output stream

e The /dev/null device

e Redirect a stream to the null device

e Other redirections to the null device

e Redirect one output stream to another

e Redirect standard input stream

e Here documents

Pipelines

e What is a pipeline?

A simple pipeline

The Unix philosophy

e A more complex pipeline

References

You will need

e A Unix CLI

e An Ubuntu server to connect to

Recommended reading

¢ Command Line Introduction

* Secure Shell (SSH)

What is a process?

A process is an instance of a computer program that is being executed.

This is a C program. A program is a passive collection of instructions stored on disk:

#include <stdio.h>

int main()

{
printf("Hello, World!");

return 0;

A process is the actual execution of a program that has been loaded into memory:

https://archidep.ch/course/cli/
https://archidep.ch/course/ssh/
https://en.wikipedia.org/wiki/Process_(computing)

Every time you run an executable file or an application, a process is created. Simple
programs only need one process. More complex applications may launch other child
processes for greater performance. For example, most modern browsers will run at least

one child process per tab.

Unix processes

Processes work differently depending on the operating system. We will focus on

processes in Unix systems, which have the following features:

Feature Description

Process ID A number uniquely identifying a process at a given time

(PID)

Exit status A number given when a process exits, indicating whether it was successful
Signals Notifications sent to a process, a form of inter-process communication (IPC)
Standard Preconnected input and output communication channels between a process and
streams its environment

Pipelines A way to chain processes in sequence by their standard streams, a form of inter-

process communication (IPC)

https://en.wikipedia.org/wiki/Process_identifier
https://en.wikipedia.org/wiki/Process_identifier
https://en.wikipedia.org/wiki/Exit_status
https://en.wikipedia.org/wiki/Signal_(IPC)
https://en.wikipedia.org/wiki/Inter-process_communication
https://en.wikipedia.org/wiki/Standard_streams
https://en.wikipedia.org/wiki/Standard_streams
https://en.wikipedia.org/wiki/Pipeline_(Unix)
https://en.wikipedia.org/wiki/Inter-process_communication
https://en.wikipedia.org/wiki/Inter-process_communication

Wl More information

These features have been standardized for Unix systems as the Portable Operating

System Interface (POSIX).

Process 1D

Let’s talk about how running processes are identified.

parent
PID 1
/sbin/init parent
| PID 1234
/usr/sbin/sshd
| PID 4325
/bin/bash

What is a process identifier?

Any process that is created in a Unix system is assigned an identifier (or PID). Each new
process gets the next available PID. This ID can be used to reference the process, for

example to terminate it with the ' kill command (more about that later).

PIDs are sometimes reused as processes die and are created again, but at any given time,

a PID uniquely identifies a specific process.

Wl More information

By default, the maximum PID on Linux systems is 32,768 on 32-bit systems, and
4,194,304 (~4 million) on 64-bit systems.

https://en.wikipedia.org/wiki/POSIX
https://en.wikipedia.org/wiki/POSIX

Parent processes

The process with PID O is the system process, also originally known as the swapper or

scheduler. This is the most low-level process managed directly by the kernel.

One of the first thing it does is run the init process, which naturally gets PID 1 (the next
available PID). The init process is responsible for initializing the system. Most other

processes are either launched by the init process directly, or by one of its children.

All processes retain a reference to the parent process that launched it. The ID of the

parent process is commonly called PPID (parent process ID).

parent
PID 1
/sbin/init parent
| PID 1234
/usr/sbin/sshd
| PID 4325
/bin/bash

The ps command

The | ps ' (process status) command displays currently-running processes:

$> ps

PID TTY TIME CMD
14926 pts/@ 00:00:00 bash
14939 pts/@ 00:00:00 ps

©V Tip

By default, it only lists your user’s processes that have a controlling terminal (TTY).

https://superuser.com/a/377675
https://en.wikipedia.org/wiki/Init

You can obtain more information with the ' —f (full format) option:

$> ps -f

uIlbD PID PPID C STIME TTY TIME CMD

jde 15237 15158 1 17:48 pts/0 00:00:00 —-bash

jde 15251 15237 0 17:48 pts/0 00:00:00 ps -f
v Tip

We are mostly interested in the Process ID (| PID), the parent Process ID (PPID)
and of course the command (| CMD) that is being run. But the others also provide

useful information.

Listing all processes

Of course, there are more than 2 processes running on your computer. Add the ' —e
(every) option to see all running processes. The list will be much longer. This is an

abbreviated example:

$> ps -ef

uib PID PPID C STIME TTY TIME CMD

root 1 0 0 09:38 7 00:00:30 /sbin/init

root 2 0 0 09:38 7 00:00:30 [kthread]

root 402 1 0 09:39 7 00:00:00 /1lib/systemd/systemd-journald
syslog 912 1 0 09:39 7 00:00:00 /usr/sbin/rsyslogd -n
root 1006 1 0 09:39 7? 00:00:00 /usr/sbin/cron -f
root 1700 1 0 Sepll ? 00:00:00 /usr/sbin/sshd -D

jde 3350 1700 © 17:52 ? 00:00:00 sshd: jde@pts/0

jde 3378 3350 0 15:32 pts/0 00:00:00 -bash

jde 3567 3378 0 15:51 pts/0 00:00:00 ps -ef

©V Tip

https://kb.iu.edu/d/afnv

Note that the command you just ran, ps —ef ,is in the process list (at the bottom

in this example). This is because it was running while it was listing the other

processes.

Process tree

On some Linux distributions like Ubuntu, the ' ps ' command also accepts a - ——forest

option which visually shows the relationship between processes and their parent:

$> ps -ef ——forest

UID PID PPID
root 1700 1
jde 3350 1700
jde 3378 3350
jde 3567 3378

You can clearly see that:

C STIME TTY

0 Sepll ?
@ 17:52 7
0 17:52 pts/0
0 17:54 pts/0

TIME CMD

00:00:00 /usr/sbin/sshd -D

00:00:00 _ sshd: jde@pts/0
00:00:00 _ —bash

00:00:00 _ ps —ef ——forest

e Process 1700, the SSH server (the ' d 'in ' sshd ' is for daemon), was launched by the

init process (PID 1) and is run by ' root .

e Process 3350 was launched by the SSH server when you connected. It is your SSH

session and manages your terminal device,named ' pts/0 here.

e Process 3378 is a Bash login shell that was launched when you connected (as

configured in /etc/passwd) and is attached to terminal pts/0 .

* Process 3567 is the ps command you launched from the shell.

Running more processes

Let’s run some other processes and see if we can list them.

Open a new terminal on your local machine and connect to the same server.

https://en.wikipedia.org/wiki/Daemon_(computing)

If you go back to the first terminal and run the | ps ' command again, you should see both
virtual terminal processes corresponding to your two terminals, as well as the two bash

shells running within them:

$> ps —ef ——forest

root 1700 1 0 Sepll ? 00:00:00 /usr/sbin/sshd -D
jde 3350 1700 @ 17:52 7 00:00:00 _ sshd: jde@pts/0
jde 3378 3350 0 17:52 pts/0 00:00:00 | _ -bash
jde 3801 3378 0 18:22 pts/0 00:00:00 | _ ps —ef ——forest
jde 3789 1700 0 18:21 7 00:00:00 _ sshd: jde@pts/1
jde 3791 3789 0 18:21 pts/1 00:00:00 _ —bash
Sleeping process

Run a sleep _command in the second terminal:

$> sleep 1000

It launches a process that does nothing for 1000 seconds, but keeps running.

It will block your terminal during that time, so go back to the other terminal and run the
following ' ps command, with an additional —-u jde @ option to filter only processes

belonging to your user:

$> ps -f -u jde ——forest

uib PID PPID C STIME TTY TIME CMD

jde 3350 1700 @ 17:52 ? 00:00:00 sshd: jde@pts/0

jde 3378 3350 0 17:52 pts/0 00:00:00 _ -bash

jde 3823 3378 0 18:24 pts/0 00:00:00 _ ps -f —-u jde ——forest
jde 3789 1700 0 18:21 ? 00:00:00 sshd: jde@pts/1

jde 3791 3789 0 18:21 pts/1 00:00:00 _ -bash

jde 3812 3791 0 18:23 pts/1 00:00:00 _ sleep 1000

https://linux.die.net/man/1/sleep

You can indeed see the running process started with the ' sleep command. You can stop

it with . Ctr1-C (in the terminal when it’s running) when you're done.

Other monitoring commands

Here are other ways to inspect processes and have more information on their resource

consumption:

e The htop .command (a better version of the older top _command, meaning table

of processes, named after its creator, Hisham’s top), shows processes along with CPU

and memory consumption. It’s an interactive command you can exit with | g ' (quit).

e The free command is not directly related to processes, but it helps you know how

much memory is remaining on your system.

$> free —-m

total used free shared buff/cache available
Mem: 985 90 534 0 359 751
Swap: 0 0 0

Wl More information

The ' —m option of the ' free command displays memory size in mebibytes, a more

human-readable quantity, instead of bytes.

Welcome to the future

Some of the previously-mentioned commands may be older than you, although they are

regularly updated. But new command line tools are also being developed today:

e The procs command is a modern interactive alternative to the ps command for

listing processes, written in Rust, a modern systems programming language.

https://hisham.hm/htop/
https://linux.die.net/man/1/top
https://www.howtoforge.com/linux-free-command/
https://simple.wikipedia.org/wiki/Mebibyte
https://github.com/dalance/procs
https://www.rust-lang.org/

e The btm command is a modern alternative to htop and top with more

features, also written in Rust.

Exit status

How children indicate success to their parent.

PID 1234
curl http://google.com

Output Error EXit status

What is an exit status?

The exit status of a process is a small number (typically from O to 255) passed from a

child process to its parent process when it has finished executing.
It is meant to allow the child process to indicate how or why it exited.

It's common practice for the exit status of Unix/Linux programs to be O to indicate

success, and greater than 0 to indicate an error (it is sometimes also called an error level).

Retrieving the exit status in a shell

In a typical shell like Bash, you can retrieve the exit status of last executed command

from the special variable $7? :

https://github.com/ClementTsang/bottom
https://www.rust-lang.org/
https://en.wikipedia.org/wiki/Bash_(Unix_shell)

$> 1ls /
$> echo $7?
$> 1s file-that-does—-not-exist

Ls: cannot access 'file-that-does—-not-exist': No such file or directory

$> echo $7?

Retrieving the exit status in code

Exit codes are not a feature that is limited to command line use. When running a program

from an application, you can also obtain the exit status.
For example:

e Byusing the &$return_var reference when calling PHP’s exec function

e Bycalling the Process#exitValue() _method after calling

Runtime#exec(String command) inJava

e By listening to the close event when calling Node.js's spawn _function

Meaning of exit statuses

The meaning of exit statuses is unique to the program you are running. For example, the

manual of the ' 1s ' command documents the following values:

Exit status:

0 if OK,

http://php.net/manual/en/function.exec.php
https://docs.oracle.com/javase/7/docs/api/java/lang/Process.html#exitValue()
https://nodejs.org/api/child_process.html#child_process_child_process_spawn_command_args_options

1 if minor problems (e.g., cannot access subdirectory),

2 if serious trouble (e.g., cannot access command-line argument).

But this will be different for other programs or applications.

The only thing you can rely on for the majority of programs is that 0 is good, anything

else is probably bad.

Signals

kill -9

sometimes, control -c
is just not enough

What is a signal?

A signal is an asynchronous notification sent to a process to notify it that an event has

occurred. Signals are sent by other processes or by the system (i.e. the kernel).

e ' Hey, the modem |

i ‘ ' hanged up.

SIGHUP——**SSH Process

--\
§

~ n
S (or process) 0k, ||| ‘
& -shut down. |

https://en.wikipedia.org/wiki/Asynchrony_(computer_programming)

If the process has registered a signal handler for that specific signal, it is executed.

Otherwise the default signal handler is executed.

Common Unix signals

A signal is defined by the | SIG prefix followed by a mnemonic name for the signal. Some
signals also have a standard number assigned to them. Here are some of the most

commonly encountered Unix signals:

Signal Number Default handler Description
SIGHUP 1 Terminate Hangup (i.e. connection lost)
SIGINT 2 Terminate Interrupt signal (sent when you use ' Ctr1-C)
SIGTERM 15 Terminate Termination signal (default signal sent by the

kill command)

SIGQUIT 3 Terminate (with core Termination signal
dump)
SIGKILL 9 Terminate Kill (cannot be caught or ignored)
SIGUSR1 - Terminate User-defined signal 1
SIGUSR2 - Terminate User-defined signal 2
SIGWINCH - Ignore Terminal window size changed
© Tip

You can list available signals on your system by running - kill -1 . Here’s a more

complete list: POSIX signals.

https://en.wikipedia.org/wiki/Core_dump
https://en.wikipedia.org/wiki/Core_dump
https://en.wikipedia.org/wiki/Signal_(IPC)#POSIX_signals

The terminal interrupt signal (STGINT)

When you type ' Ctr1-C in your terminal to terminate a running process, you are

actually using Unix signals.

The shortcut is interpreted by your shell, which then sends a terminal interrupt signal, or

SIGINT ,to the running process.

Most processes handle that signal by terminating (altough some don’t respond to it, like

some interactive helps,e.g.. man 1s).

The kitt command

The kill command sends a signal to a process.

Since the default signal handler for most signals is to terminate the process, it often has

that effect, hence the name “kill”.

Its syntax is:

kill [-<SIGNAL>] <PID>
kill [-s <SIGNAL>] <PID>

Command Effect
kill 10000 Send the default SIGTERM signal to process with PID 10000
kill -s HUP Send the | SIGHUP signal to that same process
10000
kill -HUP 10000 Equivalent to the previous command
kill -1 10000 Equivalent to the previous command (1 is the official POSIX number for

SIGHUP)

Trapping signals

This command will run a badly behaved script which traps and ignores all signals sent to

it:

$> curl -s -L https://git.io/JitFQ|sh -s
Hi, I'm running with PID 10000
Try and kill me!

Since it ignores the | SIGINT ' signal among others, you will not be able to stop it with

Ctrl-C .

Open another terminal and try to kill the process by referring to its PID (which is ' 10000

in this example but will be different on your machine):

$> kill 10000

$> kill -s HUP 10000
$> kill -s QUIT 10000
$> kill -s USR1 10000

The script will simply log that it is ignoring your signal and continue executing.

The kzILL signal

There is one signal that cannot be ignored: the KILL signal.

Although a process can detect the signal and attempt to perform additional operations,
the OS will permanently kill the process shortly after it is received, and the process can

do nothing to prevent it.

Send a ' KILL signal to the process with the same PID as before:

$> kill -s KILL 10000

https://gist.github.com/AlphaHydrae/162f28e3e2bd9355a95914e04cd4dd0c/91dda64d9e0ca26168d25195a189ca6a69a14ee6

The script will finally have the decency to die.

Unix signals in the real world

Many widely-used programs react to Unix signals, for example:

* Nginx
e PostgreSQL
e QOpenSSH

A common example is the ' SIGHUP signal. Originally it was meant to indicate that the

modem hanged up.

That’s not relevant to programs not directly connected to a terminal, but some programs

repurposed it for another use.

Many background services like Nginx and PostgreSQL will reload their configuration
(without shutting down) when receiving that signal. Many other tools follow this

convention.

http://nginx.org/en/docs/control.html
https://www.postgresql.org/docs/current/static/app-postgres.html#id-1.9.5.14.9
https://linux.die.net/man/8/sshd

Standard streams

Standard streams are preconnected input and output communication channels between a

process and its environment.

SFonolare! tnpert
g 2

T A Commandl
SRR LB ARy SHonolarc! Error

j\

P/
((
I

The good old days

In pre-Unix (before 1970) systems, programs had to explicitly connect to input and output
devices. This was done differently for each device (e.g. magnetic tape drive, disk drive,
printer, etc) and operating system. For example, IBM mainframes used a Job Control

Language (JCL) to establish connections between programs and devices.
Unix file copy
cp a.txt b.txt

JCL copy instructions for 0S/360

//IS198CPY JOB (IS198T30500), 'COPY JOB',CLASS=L,MSGCLASS=X
//COPY@1 EXEC PGM=IEBGENER

//SYSPRINT DD SYSOUT=x

//SYSUT1 DD DSN=a.txt,DISP=SHR

//SYSUT2 DD DSN=b.txt,

// DISP=(NEW, CATLG,DELETE),
// SPACE=(CYL, (40,5),RLSE),
// DCB=(LRECL=115,BLKSIZE=1150)

//SYSIN DD DUMMY

Unix streams

Unix introduced abstract devices and the concept of a data stream: an ordered sequence

of data bytes which can be read until the end of file (EOF).

A program may also write bytes as desired and need not declare how many there will be
or how to group them. The data going through a stream may be text (with any encoding)

or binary data.

This was groundbreaking at the time because a program no longer had to know or care

what kind of device it is communicating with, as had been the case until then.

https://en.wikipedia.org/wiki/Job_Control_Language
https://en.wikipedia.org/wiki/Job_Control_Language
https://en.wikipedia.org/wiki/Job_Control_Language
https://en.wikipedia.org/wiki/Job_Control_Language
https://en.wikipedia.org/wiki/Job_Control_Language
https://en.wikipedia.org/wiki/Job_Control_Language
https://en.wikipedia.org/wiki/OS/360_and_successors

stdin, stdout & stderr

Any new Unix process is automatically connected to the following streams by default:

Stream Shorthand Description

Standard stdin Stream data (often text) going into a program

input

Standard stdout Stream where a program writes its output data

output

Standard stderr Another output stream programs can use to output error messages or
error diagnostics (separate from standard output, allowing output and errors

to be distinguished, solving the semipredicate problem)

) /) s hornse?
Stanclarcl vyl

1
Fanolarcl tapert —
& [//;
L (T M e Commanel
S SREC e ARy = Stonotarc! Error
& — Z
T — T

Streams, the keyboard, and the terminal

Another Unix breakthrough was to automatically associate:

e The input stream with your terminal keyboard;

* The output and error streams with your terminal display.

This is done by default unless a program chooses to do otherwise.

https://en.wikipedia.org/wiki/Semipredicate_problem

Input data

I
stdin

\

Process BA SH

THE BOURNE-AGAIN SHELL

/7 \

stdout stderr

' N

| BN 1. bash

bash-3.2$ hellof]

Output data Error data

For example, when your favorite shell, e.g. Bash, is running, it automatically receives
keyboard input, and its output data and errors are automatically displayed in the

terminal.

Stream inheritance
A child will automatically inherit the standard streams of its parent process (unless

redirected, more on that later).

For example, when you run an = 1s ' command, you do not have to specify that the

resulting list of files should be displayed in the terminal. The standard output of the

https://en.wikipedia.org/wiki/Bash_(Unix_shell)

parent process, in this case your shell (e.g. Bash) is inherited by the ' 1s = process.

Similarly, when you run the | ssh ' command to communicate with another machine, you
do not have to explicitly connect your keyboard input to this new process. As the SSH

client is a child process of the shell, it inherits the same standard input.

Your Computer Remote Computer

Terminal

SSH server
|
'SSH
; —
Network / Internet
Shell
— { @#BASH:|
IR gl
L ;\',5',"; """""""""""
Secure channel
OS Kernel

Optional input stream

A process is not obligated to use its input or output streams. For example, the ' 1s
command produces output (or an error) but takes no input (it has arguments, but that

does not come from the input data stream).

1
stdin

\ 4
Process s

~
stdout stderr

- - 1. bash
bash-3.2% 1s -a
Output data = - bar.txt foo.txt
bash-3.2% 1s unknown. txtT
Ermordata LUs: unknown.txt: No such file or directory
bash-3.2s5 R

Optional output stream

The cd command takes no input and produces no output either, although it can

produce an error.

nputdata
S
\

Process

\
stdalt stderr

N

OO 1. bash

Outputdata bash-3.2%$ cd Documents
bash-3.2% cd foo
Error data bash: cd: foo: No such file or directory

bash-3.2% |}

Stream redirection

The standard streams can be redirected.

Redirection means capturing output from a file or command, and sending it as input to

another file or command.

Any Unix process has a number of file descriptors. They are an abstract indicator used to

access a file or other input/output resource such as a pipe (we’ll talk about these later) or

socket.

The first three file descriptors correspond to the standard streams by default:

File descriptor Stream

0 Standard input (stdin)

1 Standard output (stdout)
2 Standard error (stderr)

Redirect standard output stream

The > shell operator redirects an output stream.

For example, the following line runs the ' 1s ' command, but instead of displaying the
result in the terminal, the standard output stream (file descriptor 1) is redirected to the

file data.txt :

$> 1ls —-a 1> data.txt

$> 1s
data.txt

$> cat data.txt

https://en.wikipedia.org/wiki/File_descriptor
https://en.wikipedia.org/wiki/Pipeline_(Unix)
https://en.wikipedia.org/wiki/Unix_domain_socket

filel

directoryl

How to use standard output redirection

You can do the same with any command that produces output:

$> echo Hello 1> data.txt

$> cat data.txt
Hello

Note that the > operator overwrites the file. Use >> instead to append to the end of

the file:

$> echo World 1>> data.txt

$> cat data.txt
Hello
World

If you specify no file descriptor, standard output is redirected by default:

$> echo Hello > data.txt
$> echo Again >> data.txt
$> cat data.txt

Hello

Again

Redirect standard error stream

Note that error messages are not redirected using the redirect operator (>) like in the

previous example. Errors are still displayed in the terminal and the file remains empty:

$> 1s unknown-file > error.txt

1s: unknown-file: No such file or directory

$> cat error.txt

This is because most commands send errors to the standard error stream (file descriptor

2) instead of the standard output stream.

If you want to redirect the error message to a file, you must redirect the standard error

stream instead:

$> 1s unknown-file 2> error.txt

$> cat error.txt

1s: unknown-file: No such file or directory

Both standard output and error streams

Some commands will send data to both output streams (standard output and standard

error). As we've seen, both are displayed in the terminal by default.

For example, the ' curl (Client URL) command is used to make HTTP requests. By
default, it only outputs the HTTP response body to the standard output stream, but with
the - —v (verbose) option it also prints diagnostics information to the standard error

stream:

$> curl -L -v https://git.io/fAp8D

% Total % Received % Xferd Average Speed Time Time Time Current

Dload Upload Total Spent Left Speed
0 0 0 0 0 0 0 0 —i—i—— ——i——i—— ——l——i1—= 0
TCP_NODELAY set
Connected to git.io (54.152.127.232) port 443 (#0)

Hello World

Here, Hello World is the output data, while the rest of the output is the diagnostics

information on the standard error stream.

Redirect standard output stream (curl)

This example demonstrates how the standard output and error streams can be redirected

separately.

The following version redirects standard output to the file ' curl-output.txt :

$> curl -L —-v https://git.io/fAp8D > curl-output.txt

% Total % Received % Xferd Average Speed Time Time Time Current
Dload Upload Total Spent Left Speed
0 0 0 0 0 0 0 0 —i—i1—— =l ————i— 0

TCP_NODELAY set
Connected to git.io (54.152.127.232) port 443 (#0)

$> cat curl-output.txt
Hello World

As you can see,the Hello World output data is no longer displayed since it has been
redirected to the file, but the diagnostics information printed on the standard error

stream is still displayed.

Redirect standard error stream (curl)

The following version redirects standard error to the file curl-error.txt :

$> curl -L -v https://git.io/fAp8D 2> curl-error.txt
Hello World

$> cat curl-error.txt

% Total % Received % Xferd Average Speed Time Time Time Current
Dload Upload Total Spent Left Speed
0 0 0 0 0 0 0 0 —i—i1—— =l ————i— 0

TCP_NODELAY set
Connected to git.io (54.152.127.232) port 443 (#0)

This time, the ' Hello World output data is displayed in the terminal as with the initial

command, but the diagnostics information has been redirected to the file.

Redirect hoth standard output and error streams (curl)

You can perform both redirections at once in one command:

$> curl -L -v https://git.io/fAp8D > curl-output.txt 2> curl-error.txt

$> cat curl-error.txt

% Total % Received % Xferd Average Speed Time Time Time Current
Dload Upload Total Spent Left Speed
0 0 0 0 0 0 0 @ ——il——im— ——l——l—— =l 0

TCP_NODELAY set
Connected to git.io (54.152.127.232) port 443 (#0)

$> cat curl-output.txt
Hello World

Combine standard output and error streams (curl)

In some situations, you might want to redirect all of a command’s output (both the

standard output stream and error stream) to the same file.

You can do that with the ' & operator:

$> curl -L -v https://git.io/fAp8D &> curl-result.txt

$> cat curl-result.txt

% Total % Received % Xferd Average Speed Time Time Time Current
Dload Upload Total Spent Left Speed
0 0 0 0 0 0 0 Q0 —il——im— —— =l =l 0

TCP_NODELAY set
Connected to git.io (54.152.127.232) port 443 (#0)

Hello World

v Tip

&> file.txt isequivalentto using both 1> file.txt and 2> file.txt .

Discard an output stream

Sometimes you might not be interested in one of the output streams.

For example, let’s say you want to display the diagnostics information from a curl
command to identify a network issue, but you don’t care about the standard output. You

don’t want to have to delete a useless file either.

The /dev/null device

The file /dev/null is available on all Unix systems and is a null device (sometimes

also called a black hole). It’s a Unix device file that you can write anything to, but that will

https://en.wikipedia.org/wiki/Null_device
https://en.wikipedia.org/wiki/Device_file

discard all received data.

It never contains anything:
$> cat /dev/null

Even after you write to it:

$> echo Hello World > /dev/null

$> cat /dev/null

Redirect a stream to the null device

When you don’t care about an output stream, you can simply redirect it to the null device:

$> curl -L -v https://git.io/fAp8D > /dev/null
% Total % Received % Xferd Average Speed Time Time Time Current

Dload Upload Total Spent Left Speed
0 0 0 0 0 0 0 0 —i—:1— —i1—i1—— ——1——1—- 0

TCP_NODELAY set
Connected to git.io (54.152.127.232) port 443 (#0)

In this example, the standard output stream is redirected to the null device, and therefore

discarded, while the standard error stream is displayed normally.

Other redirections to the null device

You can also redirect the standard error stream to the null device:

$> curl -L —-v https://git.io/fAp8D 2> /dev/null
Hello World

Or you can redirect both output streams. In this case, all output, diagnostics information

and error messages will be discarded:

$> curl -L -v https://git.io/fAp8D &> /dev/null

(O Note

Please send complaints to ' /dev/null .

Redirect one output stream to another

You can also redirect one output stream into another output stream.

For example, the echo command prints its data to the standard output stream by

default:

$> echo Hello World
Hello World

$> echo Hello World > /dev/null

$> echo Hello World 2> /dev/null
Hello World

The | i>&] operator redirects file descriptor ' i ' to file descriptor j .

This echo command has its data redirected to the standard error stream:

$> echo Hello World 1>&2
Hello World

$> echo Hello World > /dev/null 1>&2
Hello World

$> echo Hello World 2> /dev/null 1>&2

©V Tip
This can be useful if you're writing a shell script and want to print error messages to

the standard error stream.

Redirect standard input stream

Just as a command’s output can be redirected to a file, its input can be redirected from a
file.

Let’s create a file for this example:

$> echo foo > bar.txt

The gzip command reads data from its standard input stream, and with the —

stdout option outputs the result to its standard output stream:

gzip —-stdout < bar.txt > bar.txt.gz

Wl More information

The above command combines two redirections to compress the contents of the

bar.txt file and save the result into bar.txt.gz .

Here documents

The << operator also performs standard input stream redirection but is a bit different.

It's called a here document and can be used to send multiline input to a command or

script, preserving line breaks and other whitespace. For example, you could use it to send

a list of names or a set of commands to be executed to a script.

http://tldp.org/LDP/abs/html/here-docs.html

Typing the following ' cat command starts a here document delimited by the string

EOF :

$> cat << EOF
heredoc> Hello
heredoc> World
heredoc> EOF
Hello

World

© Tip
After you type the first line, you won’t get a prompt back. The here document

remains open and you can type more text. Typing ' EOF ' again and pressing Enter

closes the document.

As you can see, the text you typed is printed by ' cat , with line breaks preserved.

Pipelines

The Unix philosophy: the power of a system comes more from the relationships among

programs than from the programs themselves.

pipe
ls stdout byte stream; stdin
(fd 1) unidirectional (fdoy "¢
write end read end
of pipe of pipe

What is a pipeline?

Remember that all Unix systems standardize the following:

https://en.wikipedia.org/wiki/Unix_philosophy

e All processes have a standard input stream.
e All processes have a standard output stream.
e Data streams transport text or binary data.

Therefore, the standard output stream of process A can be connected to the standard

input stream of another process B.

Pipe
Process A —stdout stdin—» Process B

Processes can be chained into a pipeline, each process transforming data and passing it

to the next process.

Imagine a production chain, where the parts (data) go from one person (process) to the

next until the final product is assembled.

AN

1 |
|

iy

A simple pipeline

The | operator (a vertical pipe) is used to connect two processes together. Let’s use two

commands, one that prints text as output and one that reads text as input:

e The 1s (list) command produces a list of files, one by line with the ' -1 ' option.

e The wc (word count) command can count words, lines (with the ' =1 option),

characters or bytes in its input.

You can pipe them together like this:
$> 1s -1 | we -1

This redirects (pipes) the output of the 1s command into the input of the wc

command, which will tell us how many files there are in the listed directory.

"I_s -1 Process

I
stdout

stderr | Pipe
stdin

v

wc -1 Process

stderr |
stdout

bash-5.2% 1ls -1 | wc -1
24
bash-5.2% |

The Unix philosophy

Pipelines are one of the core features of Unix systems.

Because Unix programs can be easily chained together, they tend to be simpler and

smaller. Complex tasks can be achieved by chaining many small programs together.

This is, in a few words, the Unix philosophy:

e Write programs that do one thing and do it well
e Write programs to work together

* Write programs to handle text streams, because that is a universal interface

@ Tip
Although many programs handle text streams, others also handle binary streams. For

example, the ImageMagick library can process images and the FEmpeg library can

process videos.

A more complex pipeline

This command pipeline combines five different commands, processing the text data at
each step and passing it along to the next command to arrive at the final result. Each of

these commands only knows how to do one job:

$> find . —-type f | \
sed 's/.x\///"' | \
egrep ".+\L[\LTHSY N
sed 's/.k\.//" | \
sort | \

uniq -c

147 jpg
10925 js
2158 json

15 less

https://en.wikipedia.org/wiki/Unix_philosophy
https://en.wikipedia.org/wiki/ImageMagick
https://en.wikipedia.org/wiki/FFmpeg

45 map
1515 md

The final result is a list of file extensions and the number of files with that extension.

e | find is used to recursively list all files in the current directory.

e [sed (stream editor) is used to obtain the files’ basenames.

egrep (extended global regular expression search and print) is used to filter out

names that do not have an extension.
e [sed isused again to transform basenames into just their extension.
e [sort isused to sort the resulting list alphabetically.

e [uniq is used to group identical adjacent lines and count them.

References

e The Linux Process Journey - PID O (swapper)- Shlomi Boutnaru

e The Linux Process Journey - PID 1 (init) - Shlomi Boutnaru

e The Linux Process Journey - PID 2 (kthreadd) - Shlomi Boutnaru

e SIGINT And Other Termination Signals in Linux

* What is the main purpose of the swapper process in Unix? - superuser

e |/0 Redirection (The Linux Documentation Project)

e Here Documents (The Linux Documentation Project)

e Unix/Linux - Shell Input/Output Redirections

e Signals - Unix fundamentals 201 - Ops School Curriculum

T Backto top

https://medium.com/@boutnaru/the-linux-process-journey-pid-0-swapper-7868d1131316
https://medium.com/@boutnaru/the-linux-process-journey-pid-1-init-60765a069f17
https://medium.com/@boutnaru/the-linux-process-journey-pid-2-kthreadd-38657c2f0fa2
https://www.baeldung.com/linux/sigint-and-other-termination-signals
https://superuser.com/a/377675
https://www.tldp.org/LDP/abs/html/io-redirection.html
http://tldp.org/LDP/abs/html/here-docs.html
https://www.tutorialspoint.com/unix/unix-io-redirections.htm
http://www.opsschool.org/unix_signals.html

