
Architecture & Deployment

2025-2026 v0.1.0 on branch main Rev: 03b1cdace14bb0b0720e24be862097b3792214ea

Make TCP connections

This exercise guides you through establishing a raw TCP connection between two servers

and manually sending an HTTP request to a web server, illustrating how network

protocols work in practice.

Legend

Parts of this exercise are annotated with the following icons:

A task you MUST perform to complete the exercise

An optional step that you may perform to make sure that everything is working

correctly, or to set up additional tools that are not required but can help you

The end of the exercise

The architecture of the software you ran or deployed during this exercise.

Troubleshooting tips: how to fix common problems you might encounter

 Legend

 Bob: listen for TCP clients

 Alice: connect to Bob’s server

 Communicate!

 Talk dirty HTTP to Google

 Troubleshooting

 What have I done?

 Architecture

Table of contents

https://archidep.ch/
https://github.com/ArchiDep/website/tree/main
https://github.com/ArchiDep/website/blob/03b1cdace14bb0b0720e24be862097b3792214ea/course/collections/_course/409-tcp/exercise.md

Bob: listen for TCP clients

Bob should run the nc command on his server to listen for TCP connections on port

3000:

$> nc -l 3000

More information

At this point, nc will start listening on port 3000 and take over the console,

waiting for a TCP client to connect.

Alice: connect to Bob’s server

Alice should run the nc command on her server to connect to TCP port 3000 on Bob’s

server:

$> nc W.X.Y.Z 3000

More information

🛠️ You need to find a partner for this part of the exercise, since the goal is to

establish a TCP connection between two of the servers you have set up for the

course.

Let’s call you Bob and your partner Alice.

Alice will need to know the public IP address of Bob’s server. We will refer to it

as W.X.Y.Z .

Here, nc is acting as a client, connecting to the listening nc process on Bob’s

server.

Communicate!

Bob should type “Hello” and press Enter to send this text:

$> nc -l 3000

Hello

It should be immediately displayed in Alice’s terminal:

$> nc W.X.Y.Z 3000

Hello

Similarly, if Alice types “World” after that and presses Enter :

$> nc W.X.Y.Z 3000

Hello

World

It should appear in Bob’s terminal:

$> nc -l 3000

Hello

World

You have a two-way raw TCP connection running.

Once you’re done, you can close the connection with Ctrl-C .

Talk dirty HTTP to Google

Let’s do something that your browser does every day: an HTTP request.

Find out Google’s IP address (O.P.Q.R in this example) using the ping command:

$> ping -c 1 google.com

PING google.com (`O.P.Q.R`) 56(84) bytes of data.

64 bytes from google.com (O.P.Q.R): icmp_seq=1 ttl=53 time=0.890 ms

...

Open a TCP connection to the Google IP address you found:

$> nc O.P.Q.R 80

Now, talk to this Google server, but not in English or French, in the HTTP protocol:

GET / HTTP/1.1

Host: www.google.com

Tip

Be sure to type exactly the text above. Your request must be a valid HTTP request or

Google’s server will not be able to interpret it correctly. If you have made a mistake,

exit with Ctrl-C and start over.

More information

By sending this text over the TCP connection, you are communicating in the HTTP

protocol, a text protocol: you are sending an HTTP request to retrieve (GET) the

resource at path / of host www.google.com (the landing page of the Google

website), using version 1.1 of the HTTP protocol.

https://en.wikipedia.org/wiki/Ping_(networking_utility)
https://en.wikipedia.org/wiki/HTTP

Press Enter twice and you should receive the HTML for Google’s home page.

Once you’re done, you can close the connection with Ctrl-C .

If you open your browser, visit http://www.google.com and display the source code

of the page, you should see the same result.

Troubleshooting

If you get a 400 Bad Request response, it means that your HTTP request is

invalid. You probably did not type exactly the text above.

If you don’t get a response, it may be because you took too long to type the text, and

the request has timed out. Try again a little faster.

What have I done?

Contratulations!

Like the pioneers of the 1970s who developed the TCP/IP suite, you have established a

TCP connection between two machines and exchanged some (hopefully nice) words with

your classmate.

You have also spoken HTTP directly to Google’s web server on a TCP connection,

demonstrating the layering of the OSI model:

You have hand-written an HTTP request, a level 7 application protocol. As you’ve

seen, this is simply text written in the correct format.

You have sent this request through a TCP connection, a level 4 transport protocol.

To reach the correct host, you have used an address of the Internet Protocol (IP), a

level-3 network protocol.

More information

There are other protocols in other layers at work, but these are the ones that interest

us in the context of this course.

You can also now fully appreciate what your browser does for you every day.

Architecture

This is a simplified architecture of the main running processes and communication flow

during this exercise:

Back to top

