
Architecture & Deployment

2025-2026 v0.1.0 on branch main Rev: 03b1cdace14bb0b0720e24be862097b3792214ea

Deploy a PHP application with SFTP

This guide describes how to deploy a PHP application over SFTP on a server with PHP

and MySQL installed, using the PHP development server.

 Legend

 Setup

 Install MySQL

 Install PHP

 Use a real password

 Upload the application

 Initialize the database

 Optional: make sure it worked

 Update the configuration

 Run the PHP development server

 What have I done?

How to improve our basic deployment

 Troubleshooting

 Daemons using outdated libraries

 SET PASSWORD has no significance error when running mysql_secure_installation

 Access denied for user ‘root’@’localhost’ (using password: NO)

 Error when running todolist.sql

 HTTP ERROR 500 error when trying to access the todolist in my browser

Table of contents

https://archidep.ch/
https://github.com/ArchiDep/website/tree/main
https://github.com/ArchiDep/website/blob/03b1cdace14bb0b0720e24be862097b3792214ea/course/collections/_course/410-sftp-deployment/exercise.md
https://www.php.net/
https://en.wikipedia.org/wiki/SSH_File_Transfer_Protocol
https://www.mysql.com/

Legend

Parts of this exercise are annotated with the following icons:

A task you MUST perform to complete the exercise

An optional step that you may perform to make sure that everything is working

correctly, or to set up additional tools that are not required but can help you

The end of the exercise

The architecture of the software you ran or deployed during this exercise.

Troubleshooting tips: how to fix common problems you might encounter

Setup

Use the previous PHP Todolist Exercice. Clone the PHP Todolist Exercice on your local

machine if you do not have it. Be sure to use a version with the three SQL queries

implemented.

Install MySQL

Connect to your server with SSH.

Update your package lists and install the MySQL database server:

$> sudo apt update

$> sudo apt install mysql-server

Tip

https://github.com/MediaComem/comem-archidep-php-todo-exercise

APT may prompt you to restart some services. See the troubleshooting section about

 Daemons using outdated libraries if necessary.

APT should automatically start MySQL after installation. You can check this with the

following command:

$> sudo systemctl status mysql

Secure your installation by running the mysql_secure_installation tool that comes

with MySQL. It will ask you several questions to help you improve the security of your

MySQL installation:

$> sudo mysql_secure_installation

Securing the MySQL server deployment.

Connecting to MySQL using a blank password.

VALIDATE PASSWORD PLUGIN can be used to test passwords

and improve security. It checks the strength of password

and allows the users to set only those passwords which are

secure enough. Would you like to setup VALIDATE PASSWORD plugin?

Press y|Y for Yes, any other key for No: y

There are three levels of password validation policy:

LOW Length >= 8

Advanced Packaging Tool (APT) is the package manager for Ubuntu (and some

other Linux distributions). We will not discuss this tool, but you can read more

about it in the installation & upgrading section of the system administration

cheatsheet.

https://en.wikipedia.org/wiki/APT_(software)
https://en.wikipedia.org/wiki/APT_(software)
https://en.wikipedia.org/wiki/APT_(software)
https://en.wikipedia.org/wiki/APT_(software)
https://en.wikipedia.org/wiki/APT_(software)
https://en.wikipedia.org/wiki/APT_(software)
https://en.wikipedia.org/wiki/Package_manager
https://archidep.ch/course/701-sysadmin-cheatsheet/#installing--upgrading
https://archidep.ch/course/701-sysadmin-cheatsheet/#installing--upgrading

MEDIUM Length >= 8, numeric, mixed case, and special characters

STRONG Length >= 8, numeric, mixed case, special characters and dictionary file

Please enter 0 = LOW, 1 = MEDIUM and 2 = STRONG: 1

Please set the password for root here.

New password: ***

Re-enter new password: ***

Estimated strength of the password: 100

Do you wish to continue with the password provided?(Press y|Y for Yes, any other k

By default, a MySQL installation has an anonymous user,

allowing anyone to log into MySQL without having to have

a user account created for them. This is intended only for

testing, and to make the installation go a bit smoother.

You should remove them before moving into a production

environment.

Remove anonymous users? (Press y|Y for Yes, any other key for No) : y

Success.

Normally, root should only be allowed to connect from

'localhost'. This ensures that someone cannot guess at

the root password from the network.

Disallow root login remotely? (Press y|Y for Yes, any other key for No) : y

Success.

By default, MySQL comes with a database named 'test' that

anyone can access. This is also intended only for testing,

and should be removed before moving into a production

environment.

Remove test database and access to it? (Press y|Y for Yes, any other key for No)

 - Dropping test database...

Success.

 - Removing privileges on test database...

Success.

Reloading the privilege tables will ensure that all changes

made so far will take effect immediately.

Reload privilege tables now? (Press y|Y for Yes, any other key for No) : y

Success.

All done!

Install PHP

Here you will install the bare minimum:

The PHP FastCGI process manager (FPM)

The PHP MySQL extension

Simply run this command to install both:

$> sudo apt install php-fpm php-mysql

 Traditionally, PHP is deployed using the Apache web server, which is a

generic web server and reverse proxy but is also capable of executing PHP code.

To simplify things in this exercise, we will not install Apache, but instead

execute the PHP application directly from the command line using the simpler

PHP development server.

https://www.php.net/manual/en/install.fpm.php
https://www.php.net/manual/en/install.fpm.php
https://www.php.net/manual/en/install.fpm.php
https://www.php.net/manual/en/install.fpm.php
https://www.php.net/manual/en/install.fpm.php
https://www.php.net/manual/en/install.fpm.php
https://www.php.net/manual/en/install.fpm.php
https://www.php.net/manual/en/set.mysqlinfo.php
https://www.apache.org/
https://en.wikipedia.org/wiki/Web_server
https://en.wikipedia.org/wiki/Reverse_proxy
https://www.php.net/manual/en/features.commandline.webserver.php

Use a real password

The todolist.sql file creates a todolist user with the password change-me-

now by default. You should change the password to a more secure value. Make sure that

the password you choose is strong enough per the minimum password requirements you

chose when you secured the MySQL installation.

Tip

Need help choosing a good password? Don’t use something that is hard to

remember. You’re better off using a passphrase (here’s a French version).

Upload the application

On your local machine, use an SFTP client like FileZilla or Cyberduck to upload the

application to the server.

Connect the SFTP client to your server using SSH public key authentication. In FileZilla,

open the Site Manager and configure your connection like this:

It is good practice to create a different user and password for each application

that connects to the MySQL database server. That way, if one of the applications

is compromised, it cannot access or modify the databases of the other

applications (provided you configured appropriate access privileges).

Notably, you should never use the MySQL root password to connect an

application to its database. You, the system administrator, should be the only

person who knows that password.

https://xkcd.com/936/
https://xkcd.com/936/
https://www.useapassphrase.com/
https://passwordcreator.org/fr.html#good
https://filezilla-project.org/
https://cyberduck.io/

You must select your private key (id_rsa and not id_rsa.pub) in FileZilla. The

server you are connecting to has your public key. Just like when you use SSH on the

command line, FileZilla will use your private key to prove to the server that you are the

owner of your public key.

Tip

On Windows, you can toggle the display of hidden files in the View tab of the

explorer to access your .ssh directory manually. On macOS, type open ~/.ssh

in your Terminal or use the Cmd-Shift-. shortcut to display hidden files. On most

Linux distributions, the file manager will have an option to show hidden files under

its menu.

Tip

On Windows, FileZilla may ask you to convert your private key to another format. You

can do so.

Once you are connected to your server with your SFTP client, copy the application to

/home/jde/todolist (replacing jde with your Unix username).

In FileZilla, you can simply drag-and-drop the directory from your machine on the left to

the server on the right. You can then rename it if necessary.

Initialize the database

Connect to your server and go into the uploaded directory:

$> hostname

jde.archidep.ch

$> cd ~/todolist

Execute the project’s SQL file to create the database and table (it will ask you for the

MySQL root user’s password you defined earlier):

$> sudo mysql < todolist.sql

Optional: make sure it worked

To make sure everything worked, you can check that the table was created in the MySQL

database server. You do not have a phpMyAdmin web interface to administer the database

This uses the Unix redirection operator < to send the contents of the

todolist.sql file into the standard input stream of the sudo mysql

command. When provided with SQL queries on its input stream, the mysql

command will connect to the MySQL server and execute them, then stop.

https://www.guru99.com/linux-redirection.html
https://en.wikipedia.org/wiki/Standard_streams#Standard_input_(stdin)

server, since you are installing everything on your server yourself, and you did not install

that.

Use the following command and SQL queries to first connect to the MySQL database

server as the administrator (the MySQL root user), then display the todo table’s

schema:

$> sudo mysql

> connect todolist;

> show create table todo;

+-------+--+

| Table | Create Table |

+-------+--+

| todo | CREATE TABLE `todo` (

 `id` bigint(20) NOT NULL AUTO_INCREMENT,

 `title` varchar(2048) NOT NULL,

 `done` tinyint(1) NOT NULL DEFAULT '0',

 `created_at` timestamp NOT NULL DEFAULT CURRENT_TIMESTAMP,

 PRIMARY KEY (`id`)

) ENGINE=InnoDB AUTO_INCREMENT=3 DEFAULT CHARSET=latin1 |

+-------+--+

1 row in set (0.00 sec)

Everything went well if the table was created, since the creation of that table is the last

step of the todolist.sql script.

You may exit the interactive MySQL console like most shells by typing exit .

Update the configuration

Update the first few lines of the index.php file with the correct configuration:

define('BASE_URL', '/');

define('DB_USER', 'todolist');

define('DB_PASS', 'your-secret-password');

define('DB_NAME', 'todolist');

define('DB_HOST', '127.0.0.1');

define('DB_PORT', '3306');

Tip

The index.php file on the server must be modified. There are several ways you

can do this:

Edit the file locally, then copy it to the server again using your SFTP client like

FileZilla.

Edit the file directly on the server with nano or vim .

Some SFTP clients allow you to open a remote file in your local editor. In

FileZilla, right-click a file, select View/Edit, then choose your favorite editor.

Make your changes and save the file. FileZilla should automatically prompt you

to upload the changes.

Run the PHP development server

Also in the uploaded directory on the server, run a PHP development server on port 3000:

$> php -S 0.0.0.0:3000

More information

The -S <addr:port> option of the php command starts the built-in web server

on the given local address and port.

https://www.php.net/manual/en/features.commandline.webserver.php
https://www.php.net/manual/en/features.commandline.webserver.php
https://www.php.net/manual/en/features.commandline.webserver.php
https://www.php.net/manual/en/features.commandline.webserver.php

Tip

You must really use 0.0.0.0 for the php -S command, and not your server’s IP

address. 0.0.0.0 is not an actual IP address; it is a special notation that tells the

PHP development server to accept connections from any IP address.

You (and everbody else) should be able to access the application in a browser at your

server’s IP address and the correct port (e.g. http://W.X.Y.Z:3000).

What have I done?

You have deployed a PHP application to a server running in the Microsoft Azure cloud.

The application is now publicly accessible by anyone on the Internet, at your instance’s

public IP address.

This is a simplified architecture of the main running processes and communication flow

at the end of this exercise:

How to improve our basic deployment

The basic SFTP deployment of the PHP TodoList has several flaws which we will fix

during the rest of the course:

Transfering files manually through SFTP is slow and error-prone. We will use Git to

reliably transfer files [from our central codebase][12factor-codebase] and easily keep

our deployment up-to-date over time.

Hardcoding configuration is a bad practice. We will use environment variables so

that our application can be dynamically configured and deployed in any environment

without changing its source code.

Starting our application manually is not suitable for a production deployment. We

will use a process manager to manage the lifecycle of our application: starting it

automatically when the server boots, and restarting it automatically if it crashes.

Accessing a web application through an IP address is not user-friendly. We will

obtain a domain and configure its DNS zone file so that our application is accessible

with a human-readable domain name.

Using a non-standard port is not user-friendly either. We will run the application on

port 80 or 443 so that the end user does not have to specify a port in the browser’s

address bar.

Running our application server directly on port 80 or 443 will cause a problem: only

one process can listen on a given port at the same time. We need another tool to

support multiple production deployments on the same server. That will be the job of

a reverse proxy like Apache or nginx.

Our application is not secure as indicated by the browser, because it is served over

HTTP and not HTTPS. We will obtain a TLS/SSL certificate signed by a trusted

certificate authority so that our application can be served over HTTPS and

recognized as secure by browsers.

The PHP Development Server is not meant to deploy applications in production

environments. We will use the FastCGI Process Manager to perform a production-

https://12factor.net/config
https://www.apache.org/
https://www.nginx.com/
https://www.php.net/manual/en/features.commandline.webserver.php
https://www.php.net/manual/en/install.fpm.php

grade deployment, making our application more resilient and able to serve more

clients concurrently.

Troubleshooting

Here’s a few tips about some problems you may encounter during this exercise.

Daemons using outdated libraries

When you install a package with APT (e.g. MySQL), it may prompt you to reboot and/or to

restart outdated daemons (i.e. background services):

Simply select “Ok” by pressing the Tab key, then press Enter to confirm.

This happens because most recent Linux versions have unattended upgrades: a

tool that automatically installs daily security upgrades on your server without

human intervention. Sometimes, some of the background services running on

your server may need to be restarted for these upgrades to be applied.

https://archidep.ch/course/410-sftp-deployment/linux-unattended-upgrades

SET PASSWORD has no significance error when running
mysql_secure_installation

You may encounter this error when mysql_secure_installation prompts you to set

the password for the MySQL root user:

$> sudo mysql_secure_installation

...

Please set the password for root here.

New password:

Re-enter new password:

Estimated strength of the password: 50

Do you wish to continue with the password provided?(Press y|Y for Yes, any other k

 ... Failed! Error: SET PASSWORD has no significance for user 'root'@'localhost'

 as the authentication method used doesn't store authentication data in the

 MySQL server. Please consider using ALTER USER instead if you want to

 change authentication parameters.

This is a bug that exists with the latest versions of mysql_secure_installation and

recent Ubuntu installations (since July 2022). If you encounter this bug,

mysql_secure_installation will be stuck in a loop. Close your terminal window and

connect to your server again in another terminal.

Connect to the MySQL server:

Since you are installing a new background service (the MySQL server) which

must be started, APT asks whether you want to apply upgrades to other

background services by restarting them. Rebooting your server would also have

the effect of restarting these services and applying the security upgrades.

$> sudo mysql

Your prompt should change to reflect the fact that you are connected to the MySQL

server. You can then run the following query:

mysql> ALTER USER 'root'@'localhost' IDENTIFIED WITH mysql_native_password BY 'pas

Then exit the MySQL server:

mysql> exit

You can now re-run the original command:

$> sudo mysql_secure_installation

Once it is done, you can reconfigure MySQL to use passwordless socket authentication (it

will ask you for the MySQL root password you have just defined):

$> sudo mysql -p

mysql> ALTER USER 'root'@'localhost' IDENTIFIED WITH auth_socket;

mysql> exit

If socket authentication is correctly configured, you should now be able to connect as the

MySQL root user without a password with sudo :

$> sudo mysql

mysql> exit

https://dev.mysql.com/doc/refman/8.0/en/socket-pluggable-authentication.html

This does not mean that anyone can access MySQL without a password. You can do

so because you are using sudo and have just configured MySQL to use socket

authentication for its root user.

There are two sets of users here:

Your server has a number of Unix users (defined in /etc/passwd), one of

them being the Unix root user.

The MySQL database server has its own list of MySQL users independent of

the system. There is also a MySQL user named root by default.

By default, the mysql command will attempt to connect as the MySQL user with

the same name as the Unix user running the command. You can also specify which

user to connect as with the -u (user) option:

$> whoami

jde

$> mysql # connect to MySQL as the MySQL "jde" user (becau

 # that is the name of the Unix user running the

$> mysql -u alice # connect to MySQL as the MySQL "alice" user

$> sudo mysql # connect as the MySQL `root` user (since you tem

 # become the Unix "root" user when using "sudo")

$> sudo mysql -u root # equivalent to the previous command

The first two mysql commands will probably fail:

ERROR 1045 (28000): Access denied for user 'jde'@'localhost' (using pass

ERROR 1045 (28000): Access denied for user 'alice'@'localhost' (using pa

https://dev.mysql.com/doc/refman/8.0/en/socket-pluggable-authentication.html
https://dev.mysql.com/doc/refman/8.0/en/socket-pluggable-authentication.html

Access denied for user ‘root’@’localhost’ (using password: NO)

If you see this error after running a sudo mysql command:

ERROR 1045 (28000): Access denied for user 'root'@'localhost' (using password: NO)

It means that your MySQL server is configured to require a password for the root user.

You have two choices:

Either add the -p option to all mysql commands. It will then prompt you for the

MySQL root password (that you defined when running

mysql_secure_installation).

This is because MySQL has no jde or alice users (unless you created them

yourself). It may also be because you are trying to connect as a MySQL user who

has a password. In this case, you should add the -p (password) option to have

MySQL prompt you for the password when connecting (e.g. mysql -u alice -

p).

If you followed the instructions above, you have replaced password authentication

for the MySQL root user with the socket authentication method which

delegates authentication to the Unix system. With this method, MySQL will

compare the username of the Unix user running the mysql command with the

MySQL user you are trying to connect as. It will only allow the connection if both

are the same. In this case, since you are the Unix root user when using sudo ,

the MySQL server will allow a connection as the MySQL root user (you will not

have to enter a password).

(Source of the solution: https://www.digitalocean.com/community/tutorials/how-

to-install-mysql-on-ubuntu-22-04)

https://dev.mysql.com/doc/refman/8.0/en/socket-pluggable-authentication.html

Or, configure MySQL to use socket authentication for the root user (the following

command will ask you for the MySQL root password you defined when running

mysql_secure_installation):

$> sudo mysql -p

mysql> ALTER USER 'root'@'localhost' IDENTIFIED WITH auth_socket;

mysql> exit

If socket authentication is correctly configured, you should now be able to connect as

the MySQL root user without a password with sudo :

$> sudo mysql

mysql> exit

See the explanations in the previous troubleshooting section for more information about

socket authentication.

Error when running todolist.sql

An error may occur when you execute the SQL queries in the todolist.sql script. For

example, MySQL may tell you the todolist user’s password in the script is not strong

enough, depending on the settings you selected when securing the MySQL installation.

To start over from scratch, connect to the MySQL server as an administrator and type the

following queries:

$> sudo mysql

> drop table todolist.todo;

https://dev.mysql.com/doc/refman/8.0/en/socket-pluggable-authentication.html

> drop user todolist@localhost;

> drop database todolist;

Tip

Some of these commands may cause errors if the todolist.sql script could not

execute entirely. For example, if the script could not create the todolist user

and/or the todo table, the first drop table todolist.todo; query will fail

with:

ERROR 1051 (42S02): Unknown table 'todolist.todo'

That’s fine. Running the three queries will make sure you have nothing left that may

have been created by the todolist.sql script, so you can start over with a clean

state.

Once you have dropped everything, you can resume the exercise from the database

initialization step.

HTTP ERROR 500 error when trying to access the todolist in my
browser

If you get an HTTP 500 error (which means an internal server error), look at the PHP

development server logs in the terminal where you are running the php -S

0.0.0.0:3000 command. You will probably see something like this:

$> php -S 0.0.0.0:3000

[Thu Oct 20 09:29:40 2022] PHP 8.1.2 Development Server (http://0.0.0.0:3000) star

[Thu Oct 20 09:29:41 2022] 213.3.2.128:44496 Accepted

[Thu Oct 20 09:29:41 2022] PHP Fatal error: Uncaught PDOException: SQLSTATE[HY000

Stack trace:

#0 /home/jde/todolist/index.php(17): PDO->__construct()

#1 {main}

 thrown in /home/jde/todolist/index.php on line 17

https://www.webfx.com/web-development/glossary/http-status-codes/what-is-a-500-status-code/

[Thu Oct 20 09:29:41 2022] 213.3.2.128:44496 [500]: GET / - Uncaught PDOException

Stack trace:

#0 /home/jde/todolist/index.php(17): PDO->__construct()

#1 {main}

 thrown in /home/jde/todolist/index.php on line 17

[Thu Oct 20 09:29:41 2022] 213.3.2.128:44496 Closing

[Thu Oct 20 09:29:41 2022] 213.3.2.128:44495 Accepted

If you see this Access denied for user 'todolist'@'localhost' (using

password: YES) in the logs, it means that MySQL is not allowing the PHP todolist to

open a MySQL connection as the todolist user. The using password: YES part

indicates that a password is sent, but it is incorrect.

You may be using the wrong password. Make sure the DB_PASS constant at the top of

the index.php file on the server contains the correct password. This must be the

password that was in the todolist.sql file when you executed it.

Tip

If you do not remember the password, follow the troubleshooting instructions for an

error running todolist.sql to re-create the database, user and password.

Back to top

