
Architecture & Deployment

2025-2026 v0.1.0 on branch main Rev: 6d218297357081f922e8a7dd1d5cd8471c27fa79

Unix Environment Variables

Learn about environment variables, a powerful way to configure applications and

processes in Unix-like operating systems, and how to manage them.

You will need

A Unix CLI

Recommended reading

Unix Processes

Presentation

What is an environment variable?

What are they for?

Managing environment variables

Getting an environment variable

Listing all environment variables

Setting an environment variable

Setting a variable for one command

Setting a variable for a shell session

Setting a variable in the shell configuration file

Removing an environment variable

Getting environment variables from code

Environment variables are always strings

References

Table of contents

https://archidep.ch/
https://github.com/ArchiDep/website/tree/main
https://github.com/ArchiDep/website/blob/6d218297357081f922e8a7dd1d5cd8471c27fa79/course/collections/_course/503-environment-variables/subject.md
https://archidep.ch/course/406-unix-processes/

What is an environment variable?

An environment variable is a named value that can affect the way running processes will

behave on a computer.

When a process runs on a Unix system, it may query variables such as:

HOME - The home directory of the user running the process.

LANG - The default locale.

TMP - The directory in which to store temporary files.

And more.

Another common example is the PATH , an environment variable that indicates in which

directories to look for binaries to execute when typing commands in a shell.

What are they for?

Environment variables can affect the behavior of programs without modifying them.

If a program bases some of its behavior on an environment variable, you can simply

change the value of the variable before running it, allowing you to customize it without

changing one line of code.

Environment variables can be used as a dynamic means of configuration, an alternative to

configuration files or hardcoded values.

Managing environment variables

Getting them, listing them, setting them, deleting them.

https://en.wikipedia.org/wiki/Path_(computing)

Getting an environment variable

To display the current value of an environment variable, use the echo command. A

variable can be referenced by its name prefixed with a dollar sign ($):

$> echo $USER

ubuntu

$> echo $HOME

/home/ubuntu

$> echo $SHELL

/bin/bash

$> echo $PATH

/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin

If a variable is not set, nothing will be displayed:

$> echo $FOO

Listing all environment variables

The env command prints all environment variables currently set in your shell, and their

values:

$> env

LC_ALL=en_US.utf-8

LS_COLORS=rs=0:di=01;34:...

LANG=C.UTF-8

USER=ubuntu

PWD=/home/ubuntu

HOME=/home/ubuntu

LC_CTYPE=UTF-8

SSH_TTY=/dev/pts/0

MAIL=/var/mail/ubuntu

TERM=xterm-256color

SHELL=/bin/bash

PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin

Setting an environment variable

There are multiple ways to set an environment variable. The lifetime of the variable

depends on how you set it:

You can set it for one command.

You can set it for the current shell session.

You can set it in your shell configuration file (e.g. .bashrc).

In order to test these techniques, download this simple script which prints the value of an

environment variable if set:

$> curl -sL https://git.io/fpdar > print-env-var.sh

$> chmod 755 print-env-var.sh

$> ./print-env-var.sh PATH

The value of $PATH is /usr/local/sbin:/usr/local/bin:...

$> ./print-env-var.sh FOO

$FOO is not set

Setting a variable for one command

You can prefix a command by an environment variable assigment:

https://git.io/fpdar

$> `FOO=bar` ./print-env-var.sh FOO

The value of $FOO is bar

This only sets the variable for the process executed by that command. As you can see, the

variable is still not set if we check later, even in the same shell session:

$> ./print-env-var.sh FOO

$FOO is not set

Setting a variable for a shell session

The export command exports an environment variable to all the child processes

running in the current shell session:

$> `export FOO=bar`

$> ./print-env-var.sh FOO

The value of $FOO is bar

$> ./print-env-var.sh FOO

The value of $FOO is bar

As you can see, the variable remains set.

However, if you close the shell and reopen a new one, the variable is no longer set:

$> ./print-env-var.sh FOO

$FOO is not set

Setting a variable in the shell configuration file

If you add the export command to your shell configuration file (.bash_profile for

Bash), it will be run every time you start a new shell:

https://en.wikipedia.org/wiki/Bash_(Unix_shell)

$> `echo 'export FOO=bar' >> ~/.bash_profile`

$> cat ~/.bash_profile

export FOO=bar

This will not immediately take effect in the current shell, as the configuration file is only

evaluated when the shell starts. But you can evaluate it with the source command:

$> source ~/.bash_profile

$> ./print-env-var.sh FOO

The value of $FOO is bar

The variable will still be set if you close this shell and launch another one:

$> ./print-env-var.sh FOO

The value of $FOO is bar

Removing an environment variable

The unset command removes a variable from the environment:

$> ./print-env-var.sh FOO

The value of $FOO is bar

$> unset FOO

$> ./print-env-var.sh FOO

$FOO is not set

Tip

Of course, if the variable is exported in your shell configuration file, this will only

remove it for the current shell session. You must remove the export from the

configuration file to remove the variable from future shells.

Getting environment variables from code

Every programming language has a simple way of retrieving the value of environment

variables:

Language Code

C getenv("PATH")

Elixir System.get_env("FOO")

Erlang os.get_env("FOO")

Go os.Getenv("FOO")

Java System.getenv("FOO")

Node.js process.env.FOO

PHP getenv("FOO")

Python os.getenv("FOO")

Ruby ENV["FOO"]

Rust env::var("FOO")

Environment variables are always strings

You may put whatever kind of value you want into an environment variable:

http://man7.org/linux/man-pages/man3/getenv.3.html
https://hexdocs.pm/elixir/System.html#get_env/2
http://erlang.org/doc/man/os.html#getenv-1
https://golang.org/pkg/os/#Getenv
https://docs.oracle.com/en/java/javase/12/docs/api/java.base/java/lang/System.html#getenv%28java.lang.String%29
https://nodejs.org/api/process.html#process_process_env
https://www.php.net/manual/en/function.getenv.php
https://docs.python.org/3/library/os.html#os.getenv
https://ruby-doc.org/core-2.6.5/ENV.html#method-c-5B-5D
https://doc.rust-lang.org/std/env/fn.var.html

export MEANING_OF_LIFE=42 # A number

export PERSON='{"name":"John Doe","age":24}' # Serialized JSON

In your programming language of choice, however, the value will always be a character

string. It’s up to you to parse it if you want to use it as another type, for example in

Node.js:

> console.log(process.env.MEANING_OF_LIFE);

42

*> process.env.MEANING_OF_LIFE + 2

*'422'

> typeof process.env.MEANING_OF_LIFE

string

> parseInt(process.env.MEANING_OF_LIFE, 10) + 2

44

> process.env.PERSON.name

undefined

> JSON.parse(process.env.PERSON).name

'John Doe'

References

Environment Variable

Linux/Unix list of common environment variables

All you need to know about Unix environment variables

Back to top

https://en.wikipedia.org/wiki/Environment_variable
https://www.cyberciti.biz/howto/question/general/linux-unix-list-common-environment-variables.php
https://www.networkworld.com/article/3215965/unix/all-you-need-to-know-about-unix-environment-variables.html

