
Architecture & Deployment

2025-2026 v0.1.0 on branch main Rev: bf5a3ed8baf85ebafdf2c8031e836d37fa6b3121

Horizontally scale a web application with nginx as a load

balancer

The goal of this exercise is to show how a web application can be scaled to handle a

growing amount of work by using systemd unit templates and configuring nginx as a load

balancer.

This guide assumes that you are familiar with reverse proxying, that you have nginx

installed and running on a server, and that you have a DNS wildcard entry preconfigured

to make various subdomains (e.g. *.jde.archidep.ch in this guide) point to that

server.

🛠️ Connect to your cloud server with SSH for this exercise.

 Legend

 Requirements

 Deploy the application

 Artificially slow down the application

 Load testing the application

 Deploy a Locust instance

 Start load testing the application with a small number of users

 Increase the load

 What to do?

 Horizontally scale the FibScale application

 Transform the FibScale systemd unit into a template

 Load-test the new FibScale service

 Spin up more instance of the FibScale application

Table of contents

https://archidep.ch/
https://github.com/ArchiDep/website/tree/main
https://github.com/ArchiDep/website/blob/bf5a3ed8baf85ebafdf2c8031e836d37fa6b3121/course/collections/_course/515-fibscale-deployment/exercise.md
https://en.wikipedia.org/wiki/Scalability
https://en.wikipedia.org/wiki/Load_balancing_(computing)
https://en.wikipedia.org/wiki/Load_balancing_(computing)
https://archidep.ch/course/509-reverse-proxy/

Legend

Parts of this exercise are annotated with the following icons:

A task you MUST perform to complete the exercise

An optional step that you may perform to make sure that everything is working

correctly, or to set up additional tools that are not required but can help you

The end of the exercise

The architecture of the software you ran or deployed during this exercise.

Troubleshooting tips: how to fix common problems you might encounter

Requirements

The application you will deploy is FibScale, a web application that computes Fibonacci

numbers.

The following requirements should be installed on your server:

 Configure nginx to balance the load among the available FibScale instances

 Not the solution to all your problems

 What have I done?

 Architecture

Cloud server exercise

Parts of this exercise happen on the cloud server you should have created for this course. Log in and make

sure you are connected to the internet to see your server's details.

Log in

https://github.com/ArchiDep/fibscale
https://en.wikipedia.org/wiki/Fibonacci_number
https://en.wikipedia.org/wiki/Fibonacci_number
https://archidep.ch/auth/switch-edu-id/configure?to=%2Fcourse%2F515-fibscale-deployment%2F

Ruby 3.2+ and compilation tools

You can install those by running the following commands:

$> sudo apt update

$> sudo apt install ruby-full build-essential

Bundler, a command-line tool that downloads Ruby gems (i.e. packages)

Once your have Ruby installed, you can install Bundler with the gem command:

$> sudo gem install bundler

Tip

You can check that everything has been correctly installed with the following

commands:

Ruby 3.x will be installed by default on Ubuntu 24.04:

$> ruby --version

ruby 3.x.y (202v-wx-yz revision 0000000000) [x86_64-linux-gnu]

More information

Bundler is Ruby’s package manager much like Composer for PHP or npm for Node.js.

Deploy the application

Let’s start by deploying the application and seeing it in action. Clone the repository on

your server and install the required dependencies:

https://www.ruby-lang.org/
https://bundler.io/

cd

git clone https://github.com/ArchiDep/fibscale.git

cd fibscale

bundle config set --local deployment 'true'

bundle install

Create a systemd unit file named /etc/systemd/system/fibscale.service (e.g.

with nano) to execute the application:

[Unit]

Description=Fibonacci calculator

[Service]

ExecStart=/usr/local/bin/bundle exec ruby fibscale.rb

WorkingDirectory=/home/jde/fibscale

Environment="FIBSCALE_PORT=4202"

User=jde

Restart=on-failure

[Install]

WantedBy=multi-user.target

Tip

Replace jde with your username in the WorkingDirectory and User

options.

Enable and start your new service:

$> sudo systemctl enable fibscale

$> sudo systemctl start fibscale

Tip

You can check that it is running with sudo systemctl status fibscale .

Create the nginx site configuration /etc/nginx/sites-available/fibscale (e.g.

with nano) to expose this component:

server {

 listen 80;

 server_name fibscale.jde.archidep.ch;

 location / {

 proxy_pass http://127.0.0.1:4202;

 }

}

Tip

Replace jde with your name and archidep.ch with your assigned domain in

the server_name directive.

Enable that configuration with the following command:

$> sudo ln -s /etc/nginx/sites-available/fibscale /etc/nginx/sites-enabled/fibscal

Check and reload nginx’s configuration:

$> sudo nginx -t

$> sudo nginx -s reload

You should now be able to access the FibScale application at

http://fibscale.jde.archidep.ch and see how it works.

As you can see, FibScale will compute Fibonacci numbers using various algorithms, and

display how much time each computation took.

Artificially slow down the application

To better show the benefits of scaling, we will configure the FibScale application to

simulate each computation being very slow. As you can see in its documentation, you can

Why is the iterative algorithm much faster for larger numbers? For those

interested in programming, FibScale implements two algorithms to compute

Fibonacci numbers:

The naive recursive algorithm.

The iterative algorithm.

We call the recursive algorithm “naive” because although it is an easier

implementation to understand and implement, it has exponential time

complexity (and space complexity) of O(2^n) because each function call

produces two recursive function calls. This means that it takes exponentially

more time and memory to compute Fibonacci numbers as you increase the

number. This is why FibScale will refuse to compute a Fibonacci number higher

than 40 with the recursive algorithm because that might hog your server’s CPU

for too long or exhaust its memory.

The iterative algorithm uses a smarter implementation that avoids the

exponential time complexity of the naive recursive algorithm by remembering

each computed Fibonacci number as it moves along. This algorithm has a time

complexity of O(n) , meaning the time increase is linear instead of

exponential. Since it uses a fixed number of variables and does not use

recursion, it has a space complexity of O(1) , meaning it consumes a fixed

amount of memory regardless of which Fibonacci number you are computing.

Read the articles Program for Fibonacci numbers and Fibonacci series in C for

more detailed explanations.

https://github.com/ArchiDep/fibscale#configuration
https://github.com/ArchiDep/fibscale/blob/d62a2c5015202f1097c7995b2463c7b498c6827d/fibscale.rb#L140-L151
https://github.com/ArchiDep/fibscale/blob/d62a2c5015202f1097c7995b2463c7b498c6827d/fibscale.rb#L153-L163
https://en.wikipedia.org/wiki/Time_complexity
https://en.wikipedia.org/wiki/Time_complexity
https://en.wikipedia.org/wiki/Space_complexity
https://en.wikipedia.org/wiki/Recursion
https://www.geeksforgeeks.org/program-for-nth-fibonacci-number/
https://www.scaler.com/topics/fibonacci-series-in-c/

do that by setting the $FIBSCALE_DELAY environment variable to a number of seconds.

Each computation will be artificially delayed by that amount of time.

Once our application is slower, we will see how we can use horizontal scaling to make it

faster.

Add the following line to the [Service] section of the

/etc/systemd/system/fibscale.service systemd unit file:

Environment="FIBSCALE_DELAY=1"

Why not compute a very high Fibonacci number instead of adding a fake delay?

If you have played with FibScale, you may have noticed that the higher the

Fibonacci number you try to compute, the more time it takes with the recursive

algorithm. For example, computing the 37th Fibonacci number with the

recursive algorithm usually takes more than 3 seconds with the Azure servers

recommended for this course.

Why then introduce an artificial delay instead of simply computing a high

Fibonacci number?

Because scaling an application is a complex task and you may not do it the

same way depending on the cause of the slowdown (e.g. CPU-bound or I/O-

bound). If we slow down the computation by consuming more CPU (i.e.

computing a high Fibonacci number), we may hit the limits of our server’s

CPU(s) too quickly. By artificially slowing down computation without consuming

more CPU or other resources, we can simplify the demonstration and

concentrate on configuring load balancing with nginx.

For more information, see the additional explanations at the end of the

exercise.

Reload the systemd configuration and restart your service:

$> sudo systemctl daemon-reload

$> sudo systemctl restart fibscale

Test the application at http://fibscale.jde.archidep.ch again and observe that every

computation now takes at least one second.

We now have a simulation of a slow application. Or do we? As the saying goes:

Don’t guess, measure!

Load testing the application

You will use Locust, an open source load testing tool written in Python, and use it to

measure the performance of the FibScale application. Load testing is the process of

putting demand on a system and measuring its response time and error rate. In this case,

https://locust.io/
https://en.wikipedia.org/wiki/Load_testing

we will simulate multiple users trying to use FibScale concurrently, and see how much

time it takes for each user to get a response.

Deploy a Locust instance

To install Locust, you need Python 3 and pip, a Python package manager, installed on your

server. You can do that with the following commands:

$> sudo apt install python3 python3-pip

Tip

APT may tell you that these packages are already installed. That’s fine.

You can then install Locust with pip:

$> sudo apt install python3-locust

This will add the locust command to your system:

$> locust -V

locust from /usr/lib/python3/dist-packages/locust (python 3.12.3)

To use Locust, you would normally write a locustfile describing a load testing scenario, i.e.

users and their behavior as they access your application. Fortunately for you, the FibScale

Do not stray too far from the instructions below when load testing when it

comes to the number of users. You are going to simulate many users sending

requests to your application concurrently. If you simulate too many users, you

may bring down your server, or your test may easily be misconstrued as a DoS

attack by the Azure cloud. Your server may end up being blacklisted.

https://www.python.org/
https://pypi.org/project/pip/
http://docs.locust.io/en/stable/writing-a-locustfile.html
https://en.wikipedia.org/wiki/Denial-of-service_attack
https://en.wikipedia.org/wiki/Denial-of-service_attack

application already comes with a pre-configured locustfile which simulates a user that

requests the computation of the 100th Fibonacci number every second.

As Locust’s documentation states, you simply need to run the locust command in a

directory containing a locustfile named locustfile.py , and Locust will be ready to

run your load testing scenario.

Let’s create a systemd unit file named /etc/systemd/system/fibscale-

locust.service that does just that:

[Unit]

Description=Locust instance to test FibScale

After=fibscale.service

[Service]

ExecStart=/usr/bin/locust

WorkingDirectory=/home/jde/fibscale

User=jde

Restart=on-failure

[Install]

WantedBy=multi-user.target

Tip

Replace jde with your name in the WorkingDirectory and User options.

Enable and start your new service:

$> sudo systemctl enable fibscale-locust

$> sudo systemctl start fibscale-locust

Tip

https://github.com/ArchiDep/fibscale/blob/main/locustfile.py
http://docs.locust.io/en/stable/quickstart.html

You can check that it is running with sudo systemctl status fibscale-

locust .

Create the nginx site configuration file /etc/nginx/sites-available/fibscale-

locust to expose Locust, which listens on port 8089 by default:

server {

 listen 80;

 server_name locust.fibscale.jde.archidep.ch;

 location / {

 proxy_pass http://127.0.0.1:8089;

 }

}

Tip

Replace jde with your name and archidep.ch with your assigned domain in

the server_name directive.

Enable that configuration with the following command:

$> sudo ln -s /etc/nginx/sites-available/fibscale-locust /etc/nginx/sites-enabled/

Check and reload nginx’s configuration:

$> sudo nginx -t

$> sudo nginx -s reload

You should now be able to access Locust at http://locust.fibscale.jde.archidep.ch.

Start load testing the application with a small number of users

The Host field tells Locust what the base URL for the load testing scenario is. Enter the

address of FibScale: http://fibscale.jde.archidep.ch . Set the Number of users to

1 and the Ramp Up to 1 for now, and run the scenario.

Tip

Replace jde with your name and archidep.ch with your assigned domain in

the Host field.

The Statistics tab shows basic numbers about the number of requests made (in total and

per second) and how much time they take

The Charts tab is more interesting: it shows the same information as line charts.

You should quickly see the number of requests per second (RPS) stabilizing at ~0.5, which

is what we would expect with 1 user: the user requests the computation of the 100th

Fibonacci number, which takes about 1 second with our artificial delay in place, and we

can see that in the response time chart. Then the user waits 1 second before repeating

the request as defined by the load testing scenario. Our single users ends up making 1

request every 2 seconds, which is 0.5 RPS.

Click the Edit button in the top bar and change the Number of users to 2 without

changing the ramp up.

With 2 users making a request every 2 seconds each, you should see the number of

requests per seconds stabilizing at ~1. Everything is as we expect so far.

Increase the load

Now change the Number of users to 10 and leave the Ramp Up to 1. This will add 8 more

users to our existing 2.

More information

The Ramp Up is the number of new users added every second, meaning that it will

take 8 seconds (1 per new user) to reach our target number of 10 users starting from

the 2 we already have.

The number of requests per second should remain unchanged while the response time

should increase to ~9 seconds.

Try computing a Fibonacci number yourself again. You will have to wait a while for a

result because the application is busy responding to the simulated Locust users.

Why is that?

The FibScale application has been deliberately implemented so that it runs in a single

execution thread on one CPU core, meaning it can only serve one request at a time. As

soon as the computation of a Fibonacci number starts for one of our users, the 9 other

users have to wait until that is done. Then the computation starts for the second user, and

the remaining users have to wait in line again.

computation 1 --1s--

computation 2 --1s--

computation 3 --1s--

computation 4 --1s--

computation 5 --1s--

computation 6 --1s--

computation 7 --1s--

computation 8 --1s--

computation 9 --1s--

 -- 9s total

In the end , each user ends up waiting for about 9 seconds before getting a response.

You may now stop the load testing scenario.

What to do?

Our application is far too slow and the user experience is horrible. We have to speed it

up!

Let’s assume that:

We don’t know Ruby and cannot find a way to speed up the application by changing

its implementation.

The slowness is not caused by a lack of resources on the server (CPU, memory or I/O

performance).

More information

These assumptions do not necessarily represent a real-world scenario, but since they

are true for this exercise, it will allow us to perform scaling on our single server.

If we have resources to spare on the server, and one instance of the FibScale application

cannot serve enough users at the same time, let’s spin up more instances and see what

happens.

Horizontally scale the FibScale application

First, stop and disable the fibscale service:

sudo systemctl stop fibscale

sudo systemctl disable fibscale

To run multiple instances of FibScale, you could create separate systemd services, but

systemd also supports unit templates, i.e. units that can be started multiple times based

on a template.

Transform the FibScale systemd unit into a template

To turn the fibscale service into a template, you must rename the

fibscale.service file to fibscale@.service :

$> sudo mv /etc/systemd/system/fibscale.service /etc/systemd/system/fibscale@.serv

When a template is started, it will have access to the instance parameter named %i .

You can use that parameter in the template definition, e.g. to pass it to the application or

change the port the application listens on.

Modify /etc/systemd/system/fibscale@.service as follows:

Remove the [Install] section and the WantedBy option it contains. We will no

longer start the fibscale service directly once it is a template.

Add the %i parameter at the end of the description.

Add the %i parameter at the end of the ExecStart command to pass it to the

FibScale application.

Tip

As you can see in FibScale’s documentation, passing an integer to the application

will change the color of its navbar to help identify different instances.

Change the value of the $FIBSCALE_PORT environment variable from the fixed

port 4202 to the dynamic port 4200%i . Since we intend on running multiple

instances of the FibScale application, they need to listen on different ports (e.g.

42001, 42002).

Add a PartOf=fibscales.target option to the [Unit] section. A systemd

target is a group of units. This fibscales.target group does not exist yet, but

we will soon create it.

The new version of the service template should look something like this:

https://github.com/ArchiDep/fibscale#configuration

[Unit]

Description=Fibonacci calculator instance %i

PartOf=fibscales.target

[Service]

ExecStart=/usr/local/bin/bundle exec ruby fibscale.rb %i

WorkingDirectory=/home/jde/fibscale

Environment="FIBSCALE_PORT=4200%i"

Environment="FIBSCALE_DELAY=1"

User=jde

Restart=on-failure

Let’s now create the systemd target file /etc/systemd/system/fibscales.target

file with the following contents:

[Unit]

Description=Fibonacci calculator cluster

Requires=fibscale@1.service

[Install]

WantedBy=multi-user.target

This will run one instance of our templated fibscale@ unit with the instance

parameter 1 , resulting in a service named fibscale@1 .

Enable and start the target just like you would a service:

$> sudo systemctl enable fibscales.target

$> sudo systemctl start fibscales.target

You can check the status of a target like you would a service:

$> sudo systemctl status fibscales.target

You can also check the status of each individual instance:

$> sudo systemctl status fibscale@1

Now that FibScale is up and running again, update the nginx site configuration file

/etc/nginx/sites-available/fibscale to support multiple FibScale instances.

There is only one for now, but we will add more soon enough.

You need to define an nginx upstream which is a group of servers, basically a list of

addresses where our FibScale applications can be reached. We only have one service

running for now, fibscale@1 . Since the instance parameter %i has the value 1

and we set the value of the $FIBSCALE_PORT environment variable to 4200%i , that

instance of the service listens on port 42001 . Let’s define that upstream and update the

proxy_pass directive to point to it:

Group of FibScale applications.

upstream fibscale {

 server 127.0.0.1:42001;

}

server {

 listen 80;

 server_name fibscale.jde.archidep.ch;

 location / {

 # Proxy to the upstream.

 proxy_pass http://fibscale;

 }

}

Test and reload nginx’s configuration:

http://nginx.org/en/docs/http/ngx_http_upstream_module.html
http://nginx.org/en/docs/http/ngx_http_upstream_module.html

$> sudo nginx -t

$> sudo nginx -s reload

Access the FibScale application at http://fibscale.jde.archidep.ch again, and note that the

navbar has changed color (because of the instance parameter passed as argument).

Load-test the new FibScale service

Access Locust at http://locust.fibscale.jde.archidep.ch and run the same load testing

scenario as before: test the Host http://fibscale.jde.archidep.ch with the Number of users

set to 10 and the Ramp Up set to 1.

You should see similar numbers as before. After all, we haven’t really changed anything

yet: there is still only one FibScale application responding to requests.

Spin up more instance of the FibScale application

To launch more instances of the FibScale application, simply update the

/etc/systemd/system/fibscales.target file to run more instances of the service.

Let’s run three:

[Unit]

Description=Fibonacci calculator cluster

Requires=fibscale@1.service fibscale@2.service fibscale@3.service

[Install]

WantedBy=multi-user.target

To take these changes into account, reload the systemd configuration and start the

fibscales.target group again (no need to restart it):

$> sudo systemctl daemon-reload

$> sudo systemctl start fibscales.target

You should then be able to check the status of each instance separately:

$> sudo systemctl status fibscale@1

$> sudo systemctl status fibscale@2

$> sudo systemctl status fibscale@3

You should not see any change in Locust yet, because nginx is not yet aware of the

additional instances.

Configure nginx to balance the load among the available FibScale
instances

Update the upstream definition in the nginx site configuration file

/etc/nginx/sites-available/fibscale to add your new FibScale instances. Since

the instance parameter %i is 2 and 3 for our 2 new instances, we know they’re

listening on ports 42002 and 42003 :

upstream fibscale {

 server 127.0.0.1:42001;

 server 127.0.0.1:42002;

 server 127.0.0.1:42003;

}

Test and reload nginx’s configuration:

$> sudo nginx -t

$> sudo nginx -s reload

Check Locust again and you should quickly see the number of requests per second

increase to 3 and the response time decrease.

If you access the FibScale application at http://fibscale.jde.archidep.ch and reload the

page a few times, you will see that the navbar changes color, indicating that nginx

correctly distributes your requests to the 3 FibScale instances.

Now that the load is distributed among the 3 instances, our users’ computations are

executed 3 at a time in parallel. For the same number of requests, it will only take a third

of the time compared to before.

computation 1 --1s--

computation 2 --1s--

computation 3 --1s--

computation 4 --1s--

computation 5 --1s--

computation 6 --1s--

computation 7 --1s--

computation 8 --1s--

computation 9 --1s--

 ------------------ 3s total

Not the solution to all your problems

This exercise is intended as a demonstration of how to perform load balancing with

nginx. But horizontal scaling is not necessarily a silver bullet for all your performance

problems, especially on a single server.

Actually, deploying more instances of your application on the same server may even make

the problem worse depending on the cause!

Three of the main causes of performance issues are: using too much CPU, not

having enough memory, performing too much I/O (input/output, e.g. disk

access). Whether horizontal scaling will work depends on the cause and on

many other factors:

If your application is slow because it uses too much CPU (e.g. it makes

many complex calculations), increasing the number of instances may not

increase performance. It may even decrease it if your server’s CPU core(s)

becomes overloaded. It will depend on the following factors:

Does your server have only one CPU core?

If you are running a CPU-bound application on a machine with one

CPU core, spinning up multiple instances of the application will only

increase performance as long as you have CPU capacity to spare.

Once CPU usage reaches 100%, running more instances is unlikely to

improve performance because one core cannot run things in parallel.

It can run things concurrently using multithreading, but that will

probably not be enough change the overall throughput. Performance

will start decreasing as you add more instances.

Does your server have multiple CPU cores?

Is the application single-threaded (i.e. it can only serve one

request at a time)? This depends on which programming

language it is implemented in and how it is implemented.

In this case, spinning up more instances will probably increase

performance because the different cores can execute your code in

parallel. But it will depend on how many instances you launch

and on the other programs that may also be consuming CPU

capacity on your server. At some point all of the CPU cores will be

working at 100% capacity. Spinning up more instances then will

only make the application (and the whole server) slower.

Is the application already parallelizing its work (i.e. a single

instance executes natively on multiple CPU cores)?

In this case, spinning up more instance will only increase

performance as long as you have CPU capacity to spare (i.e. all

CPU cores are not yet at 100% usage). Once all CPU cores are

fully utilized, running more instances will only make the

application (and the whole server) slower.

https://en.wikipedia.org/wiki/Multithreading_(computer_architecture)

If your application is slow because it consumes too much memory (e.g. it

keeps references to a lot of data structures in memory), spinning up

multiple instances may increase performance IF your server has memory

capacity to spare.

If the memory usage is already close to 100%, the only thing you will

achieve by spinning up more instances of your application is to bring down

your whole server due to a lack of memory.

If your application is slow due to I/O (e.g. it regularly stores/retrieves data

from disk or from a database), increasing the number of instances will

probably increase performance, but only IF the I/O work can be parallelized,

which depends entirely on what kind of work it is.

File access can be parallelized up to a point, but at some point there will

be too many accesses for your server’s hard drive (or even SSD) to keep up.

Database servers are designed for concurrent access and can get the most

out of your hardware, but again there is a limit, especially if it’s running on

the same server as your application. At some point, running more instances

will slow everything down.

 Optimizing the application

If your application consumes too much CPU or memory, or performs too much

I/O, you can of course try to identify the bottlenecks in the implementation and

optimize them to consume less resources. The application may then be able to

process more requests or with a shorter response time.

This is a programming issue not directly related to architecture.

 Scaling further

Running the load testing tool (Locust) on the same server as the application

your are testing is actually quite a bad idea. As you increase the load, Locust

itself will start consuming CPU and memory to simulate users. This will slow

down your server and make your application slower than it would normally be.

Regardless of the reason why your application is slow, you also have to make

sure that it supports concurrency (concurrent access to files, to the database,

etc) before you start spinning multiple instances, or else they might run into

conflicts with each other.

Once you reach the limits of a single server, you can launch other servers and

run new instances of your application on those servers. In this exercise, you

have configured an nginx upstream that only contacts 127.0.0.1 (your

server itself), but nothing prevents you from pointing to other IP addresses (or

domain names) to spread the work among multiple servers. Of course, in this

case you have to make sure that your application supports being distributed

across multiple servers.

If you are very successful and reach 10,000+ concurrent clients, nginx may also

become a bottleneck in your architecture and you may have to set up load

balancing at the DNS level.

 Performance is hard!

In summary: performance is a very complex issue.

Again, before setting up anything: don’t guess, measure!

Again, be careful of issues such as rate limiting and (D)DoS protection when

load testing. Load tests can look a lot like a DoS attack. You may inadvertently

be banned by your cloud provider if you’re not careful.

 Scaling FibScale horizontally

For your information, the FibScale application is very easy to scale horizontally

on a single server because:

https://en.wikipedia.org/wiki/Rate_limiting
https://en.wikipedia.org/wiki/Denial-of-service_attack

What have I done?

You have installed a web application and identified a performance problem by using

Locust, a load testing tool, to measure the average response time to clients.

To improve the user experience, you have performed horizontal scaling of your

application by spinning up multiple instances and load balancing incoming requests to

these various instances through nginx. This allows new instances to serve new clients

while others are busy, increasing the overall throughput and decreasing the response

time for each client.

Architecture

This is a simplified architecture of the main running processes and communication flow

at the end of this exercise:

It consumes little CPU (when using the iterative algorithm) and is neither

memory-bound nor I/O bound. Its slowness in this exercise is artificially

caused by a call to Ruby’s sleep function. This consumes neither CPU

nor memory, and does not perform any I/O.

It is pre-configured to be single-threaded so that spreading its work among

multiple processes shows a clear improvement.

Since each computation of a Fibonacci number is independent of the

others, and there is no shared resource to access (e.g. a database), there is

no issue with running multiple instances. They never need to talk to each

other or synchronize access to anything.

https://locust.io/
https://en.wikipedia.org/wiki/Load_testing
https://en.wikipedia.org/wiki/Scalability
https://en.wikipedia.org/wiki/Load_balancing_(computing)
https://github.com/ArchiDep/fibscale/blob/00dba541f53468c94b239b692372a714f5b919e1/fibscale.rb#L84
https://github.com/ArchiDep/fibscale/blob/00dba541f53468c94b239b692372a714f5b919e1/config/puma.rb#L4-L5

Note

Note that this diagram only shows the processes involved in this exercise, ignoring

the other applications (such as the PHP Todolist) we have also deployed on the

server.

Back to top

https://archidep.ch/course/515-fibscale-deployment/images/architecture.pdf
https://archidep.ch/course/515-fibscale-deployment/images/architecture.png

