
Architecture & Deployment

2025-2026 v0.1.0 on branch main Rev: bf5a3ed8baf85ebafdf2c8031e836d37fa6b3121

Set up an automated deployment with Git hooks

This guide describes how to automatically deploy a PHP application when pushing

commits to a server.

It assumes that you have performed the previous [nginx & PHP-FPM

exercise]/course/512-nginx-php-fpm-deployment/.

 Legend

 Set up directories

 Update the todolist nginx configuration

 Create a bare Git repository on the server

 Add a post-receive hook to the Git repository

 Add the server’s Git repository as a remote

 Trigger an automated deployment

 Check that the automated deployment worked on the server

 Commit a change to the project and deploy it

 What have I done?

 Architecture

Table of contents

Cloud server exercise

Parts of this exercise happen on the cloud server you should have created for this course. Log in and make

sure you are connected to the internet to see your server's details.

Log in

https://archidep.ch/
https://github.com/ArchiDep/website/tree/main
https://github.com/ArchiDep/website/blob/bf5a3ed8baf85ebafdf2c8031e836d37fa6b3121/course/collections/_course/602-git-automated-deployment/exercise.md
https://archidep.ch/auth/switch-edu-id/configure?to=%2Fcourse%2F602-git-automated-deployment%2F

Legend

Parts of this exercise are annotated with the following icons:

A task you MUST perform to complete the exercise

An optional step that you may perform to make sure that everything is working

correctly, or to set up additional tools that are not required but can help you

The end of the exercise

The architecture of the software you ran or deployed during this exercise.

Troubleshooting tips: how to fix common problems you might encounter

Set up directories

Create two directories, todolist-automated and todolist-automated-repo , in

your home directory:

$> cd

$> mkdir todolist-automated

$> mkdir todolist-automated-repo

The todolist-automated-repo directory will be the Git repository. Later you will add

it as a remote in your local Git repository, so that you can push commits to it.

The todolist-automated directory will contain the currently deployed version of the

code. The goal is that every time you push commits to the repository, this directory is

automatically updated.

🛠️ Connect to your cloud server with SSH for this part of the exercise.

Update the todolist nginx configuration

In previous exercises you configured nginx to serve the PHP application from the

todolist-repo directory. Edit that configuration:

$> sudo nano /etc/nginx/sites-available/todolist

Change todolist-repo to todolist-automated so that nginx looks for files in the

correct directory.

Tell nginx to reload its configuration:

$> sudo nginx -s reload

The site at http://todolist.jde.archidep.ch may not work anymore. You may get a 404 Not

Found error from nginx since there are no files in the todolist-automated directory

yet.

Create a bare Git repository on the server

Git will not let you push commits to a normal repository with a working tree, so you need

to use a bare repository instead, with only its Git directory:

$> cd ~/todolist-automated-repo

$> git init --bare

Initialized empty Git repository in /home/jde/todolist-automated-repo/

Remember that a Git repository has several parts: the Git directory where the

project’s history is stored, and the working tree which contains the current

version of the files you are working on.

https://archidep.ch/course/201-git/slides/#/13
https://archidep.ch/course/201-git/slides/#/13
https://archidep.ch/course/201-git/slides/#/13

Add a post-receive hook to the Git repository

Copy this script:

#!/usr/bin/env bash

set -e

echo Checking out latest version...

export GIT_DIR=/home/jde/todolist-automated-repo

export GIT_WORK_TREE=/home/jde/todolist-automated

git checkout -f main

cd "$GIT_WORK_TREE"

echo Deployment successful

This script will take the latest version of the code in the todolist-automated-repo

repository and checkout a working tree in the todolist-automated directory (the one

nginx is serving files out of).

Warning

If your repo has a master branch instead of a main branch, replace main by

master in the git checkout -f main command in your hook.

A bare repository is a repository with only a Git directory and no working tree.

The project’s files are not checked out. It’s used mostly on servers for sharing or

automation. Read What is a bare repository? for more information.

Normally, when you use the git checkout command in a Git repository, it

will use the .git directory of the repository as the Git directory, and the

repository itself as the working tree.

https://www.saintsjd.com/2011/01/what-is-a-bare-git-repository/

Open the post-receive file in the repository’s hooks directory:

$> nano hooks/post-receive

Paste the contents of the script your copied above.

Tip

Replace jde with your username in the GIT_DIR and GIT_WORK_TREE

variables.

Exit with Ctrl-X and save when prompted.

Make the hook executable:

$> chmod +x hooks/post-receive

Make sure the permissions of the hook are correct:

$> ls -l hooks/post-receive

-rwxrwxr-x 1 jde jde 239 Jan 10 20:55 hooks/post-receive

Tip

It should have the x (execute) permission for owner, group and others.

By setting the GIT_DIR environment variable, you are instructing Git to use a

different Git directory which could be anywhere (in this case, it is the bare

repository you created earlier).

By setting the GIT_WORK_TREE environment variable, you are instructing Git

to use a different directory as the working tree. The files will be checked out

there.

Add the server’s Git repository as a remote

Go to the PHP todolist repository on your local machine:

$> cd /path/to/projects/php-todo-ex

As you have already seen with GitHub, Git can communicate over SSH. This is not limited

to GitHub: you can define a remote using an SSH URL that points to your own server.

Add an SSH remote to the bare repository you created earlier (replace jde with your

username and W.X.Y.Z with your server’s IP address):

$> git remote add archidep jde@W.X.Y.Z:todolist-automated-repo

Tip

Replace jde with your username and W.X.Y.Z with your server’s public IP

address.

More information

The format of the remote URL is <user>@<ip-address>:<relative-path> . Git

can connect to your server over SSH using public key authentication just like when

you use the ssh command. It will then look for a repository at the path you have

specified, relative to your home directory.

🛠️ Disconnect from your cloud server or open another terminal. The following

steps happen on your local machine.

https://git-scm.com/book/en/v2/Git-on-the-Server-The-Protocols#_the_ssh_protocol

Trigger an automated deployment

From your local machine, push the latest version of the main branch to the remote on

your server:

$> git push archidep main

Enumerating objects: 36, done.

Counting objects: 100% (36/36), done.

Delta compression using up to 8 threads

Compressing objects: 100% (19/19), done.

Writing objects: 100% (36/36), 15.09 KiB | 15.09 MiB/s, done.

Total 36 (delta 16), reused 36 (delta 16)

remote: Checking out latest version...

remote: Deployment successful

To W.X.Y.Z:todolist-automated-repo

 * [new branch] main -> main

Warning

If your repo has a master branch instead of a main branch, replace main by

master in the git push archidep main command in your hook.

Tip

If you have set up your post-receive hook correctly, you will see the output of its

echo commands displayed when you run git push . In the above example, they

are the two lines starting with remote: .

The site at http://todolist.jde.archidep.ch should work again.

Check that the automated deployment worked on the server

Additionally, the todolist-automated directory should contain the latest version of

the project’s files, as checked out by the post-receive hook:

$> ls ~/todolist-automated

LICENSE.txt README.md images index.php todolist.sql update.sh

Commit a change to the project and deploy it

Using your favorite editor, make a visible change to the project’s index.php file.

Tip

For example, look for the TodoList tag in the <header>

and change the title.

Commit and push your changes to the archidep remote (i.e. your server):

$> git add .

$> git commit -m "Change title"

$> git push archidep main

...

🛠️ Reconnect to your cloud server or switch to a terminal where you are still

connected.

🛠️ Back to your local machine again.

remote: Checking out latest version...

remote: Deployment successful

To W.X.Y.Z:todolist-automated-repo

 4ea6994..2faf028 main -> main

Visit http://todolist.jde.archidep.ch again. Your changes should have been deployed

automatically!

What have I done?

You have created a bare Git repository on your server and pushed the PHP todolist to that

repository. You have set up a Git hook: a shell script that is automatically executed every

time a new commit is pushed. This script deploys the new version of the todolist by

copying the new version to the correct directory.

This allows you to deploy new versions by simply pushing to the repository on your server.

You could add any command you wanted to your deployment script.

Architecture

This is a simplified architecture of the main running processes and communication flow

at the end of this exercise. Note that it has not changed compared to the previous

exercises since we have neither created any new processes nor changed how they

communicate:

https://archidep.ch/course/512-nginx-php-fpm-deployment/#classical_building-architecture
https://archidep.ch/course/512-nginx-php-fpm-deployment/#classical_building-architecture

Back to top

https://archidep.ch/course/602-git-automated-deployment/images/architecture.pdf
https://archidep.ch/course/602-git-automated-deployment/images/architecture.png

