
Architecture & Deployment

2025-2026 v0.1.0 on branch main Rev: bf5a3ed8baf85ebafdf2c8031e836d37fa6b3121

Deploy web applications with a database to Render

The goal of this exercise is to deploy the same PHP Todolist application as in previous

exercises, but this time on the Render Platform-as-a-service (PaaS) cloud instead of your

own server in the Infrastructure-as-a-Service (IaaS) Microsoft Azure Web Services cloud.

This illustrates the difference between the two cloud service models.

This guide assumes that you are familiar with Git and that you have a basic

understanding of what a Platform-as-a-Service is.

🛠️ Work on your local machine, NOT your cloud server. The goal of this exercise is

to deploy on Render, not your own server, to illustrate the difference between

Platform-as-a-Service (PaaS) and Infrastructure-as-a-Service (IaaS).

 Legend

 Install PostgreSQL

macOS

Windows

 Getting your Todolist fork up-to-date.

 Add the upstream as a remote

 Fetch data from upstream

 Push the new branch to GitHub

 Create and configure a PostgreSQL Database on Render

 Create a Render account

 Create a PostgreSQL instance

 Connect to the database and create tables

 Deploy the application

Table of contents

https://archidep.ch/
https://github.com/ArchiDep/website/tree/main
https://github.com/ArchiDep/website/blob/bf5a3ed8baf85ebafdf2c8031e836d37fa6b3121/course/collections/_course/704-render-deployment/exercise.md
https://github.com/ArchiDep/php-todo-ex
https://archidep.ch/course/201-git/slides/
https://render.com/

Legend

Parts of this exercise are annotated with the following icons:

A task you MUST perform to complete the exercise

An optional step that you may perform to make sure that everything is working

correctly, or to set up additional tools that are not required but can help you

The end of the exercise

The architecture of the software you ran or deployed during this exercise.

Troubleshooting tips: how to fix common problems you might encounter

Install PostgreSQL

PostgreSQL is a relational database management system that is very similar to MySQL.

We use it here because we can deploy it with one click on Render. Other benefits of using

PostgreSQL are performance, concurrency and SQL language support. You will need to

install PostgreSQL on your own machine in order to access the remote instance hosted on

Render using the psql command-line interface. The installation procedure differs on

macOS and Windows.

macOS

To install PostgreSQL, you will be using Homebrew, the leading package manager for

Mac. You may install it directly from your terminal, by entering:

 Create a web service

 Define environment variables

 Deploy the web service

 What have I done?

https://brew.sh/

$> /bin/bash -c "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/H

Once this is done, you can easily install packages by writing brew install followed

by the name of the package:

$> brew install postgresql@18

Check that you have access to the psql command by entering:

$> psql --version

psql (PostgreSQL) 18.x (Homebrew)

Windows

Go to the PostgreSQL downloads page and choose version 18.x for Windows x86-64.

Launch the installer and follow the installation instructions. You can decide to install only

the command-line tools. The following instructions assume you installed PostgreSQL in

the default directory on your C drive.

The installer does not take care of adding psql to your shell’s path. You will therefore

add it manually. Open Git Bash and enter the following commands:

$> echo 'export PATH=$PATH:"/c/Program Files/PostgreSQL/18/bin/"' >> ~/.bashrc

$> source .bashrc

Check that you have access to the psql command by entering:

$> psql --version

psql (PostgreSQL) 18.x (Homebrew)

https://www.enterprisedb.com/downloads/postgres-postgresql-downloads

Getting your Todolist fork up-to-date.

When you started working on the Todolist application, you forked an existing codebase

from a GitHub repository. While you were working on your configuration, the team with

access to the original repository implemented the changes necessary for a PaaS

deployment in a branch called docker-postgres .

By default, your fork does not track changes from the original repo, which is also

commonly referred to as the upstream. Let’s reconfigure our repository so that it can fetch

data from there.

Tip

If you do not remember where the Todolist repository is stored on your local

machine, you can simply clone it again from GitHub by running git clone

git@github.com:JohnDoe/php-todo-ex.git . Don’t forget to replace JohnDoe

with your GitHub username.

Add the upstream as a remote

From the terminal, move into your repository and add the upstream repository as a

remote (this time, leave ArchiDep in the URL, you want to use the original URL and not

your own):

$> cd php-todo-ex

$> git remote add upstream https://github.com/ArchiDep/php-todo-ex

More information

Unlike the automated deployment exercise, you will not be pushing to this remote.

You couldn’t anyway, as you are not a collaborator on the upstream repository so you

do not have the right to push. Instead, you will use it to fetch up-to-date code from a

branch.

https://archidep.ch/course/602-git-automated-deployment/

Fetch data from upstream

Fetch all commits from the upstream repository:

$> git fetch upstream

remote: Enumerating objects: 11, done.

remote: Counting objects: 100% (11/11), done.

remote: Compressing objects: 100% (6/6), done.

remote: Total 11 (delta 4), reused 11 (delta 4), pack-reused 0

Unpacking objects: 100% (11/11), 3.20 KiB | 545.00 KiB/s, done.

From https://github.com/ArchiDep/php-todo-ex

 * [new branch] docker-postgres -> upstream/docker-postgres

 * [new branch] main -> upstream/main

As you can see, this gives you access to upstream branches, including one called

upstream/docker-postgres . With the next command you will copy the content of

that upstream branch into your own branch.

$> git switch -c docker-postgres upstream/docker-postgres

branch 'docker-postgres' set up to track 'upstream/docker-postgres'.

Switched to a new branch 'docker-postgres'

This command will create a new branch in your local repository, based on the contents of

the upstream branch. This command automatically switches you to the new branch. If you

browse through the project in a code editor or by using cat , you should now be able to

see changes to todolist.sql , as well as a mysterious new Dockerfile .

More information

Docker is a tool designed to make it easier to create, deploy, and run applications by

using containers. Containers allow a developer to package up an application with all

of the parts it needs, such as libraries and other dependencies, and ship it all out as

one package. A Dockerfile is a text file that contains instructions for how to build a

Docker image. We will learn more about Docker later in the course, and you can of

course learn more on the Docker website.

Push the new branch to GitHub

$> git push origin

...

 * [new branch] docker-postgres -> docker-postgres

You can go check on GitHub whether your new branch has been pushed, by displaying the

branch dropdown:

 Let’s note that this whole step has nothing to do with PaaS deployments in and of

themselves. It is just a corollary of some code changes that had to be made for the

Todolist to work with PostgreSQL and Docker.

Create and configure a PostgreSQL Database on Render

Instead of manually configuring a Linux server, you will be provisioning a couple of

services on Render. The first is a PostgreSQL Database.

https://www.docker.com/

Create a Render account

Start by creating a new Render account. If you choose to register using GitHub, you will be

able to skip linking these two accounts together later:

Create a PostgreSQL instance

Sign-in to your Render account and click the new PostgreSQL button:

https://dashboard.render.com/register

Warning

You can only have 1 active PostgreSQL deployment in the free Render tier. If you

want more, you gotta pay.

This will take you to the following setup page, where you will need to configure:

A name for your deployment

A name for the database

A username

The region where the database is deployed (pick the one closest to your customers).

A password will be automatically generated for you.

When you are done, click Create Database and your PostgreSQL database will be

provisioned automatically. Be patient, this process can take a few minutes. Once it is

deployed you will be taken to a page with information pertaining to your new database

and you should see the following:

Connect to the database and create tables

At this point, you have a database. Congratulations. But you still need to set its tables up.

As you did in the first Todolist tutorial, you will be running the todolist.sql script on

the database, albeit remotely.

More information

The script is a bit different than the previous one because of two factors. First, we

are using PostgreSQL instead of MySQL. Second, we do not need to create a

database. As a matter of fact, this script is a bit simpler than the previous one.

Go back to your terminal and make sure you are in your repository and on the docker-

postgres branch:

$> git branch --show-current

docker-postgres

If not, check out the correct branch with the git switch docker-postgres

command.

Next, connect to your PostgreSQL database from the command line. On the Render

dashboard, you should be able to see a Connections section. This is where all the

connection information to your database lives. You will need this information more than

once, so keep this tab open.

The information you need to connect to the database shell is located in the PSQL

Command field. You can display or copy the contents of this field by clicking the icons to

the left of the hidden characters.

Copy and paste the command in your terminal. This will connect you directly to the

remote database deployed by Render.

$> PGPASSWORD=your_password psql -h your_host.frankfurt-postgres.render.com -U you

psql (14.6 (Homebrew), server 15.1)

WARNING: psql major version 16, server major version 16.

 Some psql features might not work.

SSL connection (protocol: TLSv1.3, cipher: TLS_AES_128_GCM_SHA256, bits: 128, comp

Type "help" for help.

your_database=>

You can now execute the todolist.sql file:

your_database=> \i todolist.sql

CREATE TABLE

Tip

You can make sure the script worked by displaying all the todo table’s columns:

your_database=> \d+ todo

 Column | Type | Default

------------+-----------------------------+-------------------------------

 id | integer | nextval('todo_id_seq'::regclas

 title | character varying(2048) |

 done | boolean | false

 created_at | timestamp without time zone | CURRENT_TIMESTAMP

Now quit the PostgreSQL shell by entering \q .

Deploy the application

Now that you have a database in place, it is time to deploy the web application itself.

Create a web service

From your Render dashboard, hover over the bluish “New” button and select Web Service.

Render web services need to be connected to a Git repository hosted either on GitHub or

GitLab. This step will allow you to automate deployments from your codebase. Instead of

manually setting up hooks like in the Automated Deployment exercise, you will rely on

Render to take care of this for you.

If you are signed up using GitHub, you should see a list of all the repositories that can be

used to create a web service. If not, you will need to follow the procedure to link your

GitHub account to Render. Choose the appropriate repository for the purposes of this

deployment and click connect.

Similar to GitHub, [GitLab][Gitlab] is also a version control platform that allows

developers to manage and track changes to their codebase. They both use the

Git version control system. Although they share the majority of their feature

sets, GitLab can be self-hosted, which means that you can install and run it on

your own servers. This can be useful for organizations that want to have more

control over their infrastructure or that have specific security or compliance

requirements.

https://archidep.ch/course/602-git-automated-deployment/

More information

As you can see, you can connect any public Git repository to Render by entering an

URL in the field.

Once you have connected the repository, you will need to configure the deployment. Make

sure you set the following basic options up:

A name for your web service.

The region where the service is deployed (pick the one closest to your customers).

The branch from your repository that should be deployed (docker-postgres).

The runtime environment (should automagically have Docker selected).

The pricing tier.

Define environment variables

In addition to these basic options, we will directly set up our environment variables on

this page. Scroll down a bit and click the Advanced button. From there, you can add an

arbitrary amount of envionment variables. You will use the following ones to connect

your application to the PostgreSQL database you created earlier. All of the values can be

found in the connection panel of your database’s dashboard:

Environment variable Description

DB_HOST The host at which the PostgreSQL database can be reached.

DB_PORT The port at which the PostgreSQL database can be reached.

DB_NAME The name of the PostgreSQL database.

Environment variable Description

DB_USER The PostgreSQL user to connect as.

DB_PASS The password of the PostgreSQL user.

More information

You can also store secret files (like .env or .npmrc files and private keys) in Render.

These files can be accessed during builds and in your code just like regular files. You

can upload them right in this configuration panel or from the service’s dashboard,

post-deployment.

Deploy the web service

Once you are done configuring your deployment, you may click the Create Web Service

button at the bottom of the page. This will take you to the deployment page, where you

will be able to follow along the logs and discover the domain Render has attributed to

your app.

Once the deployment has succeeded, you will be able to visit the todolist at the URL

provided by Render. You may also use a custom domain by following this tutorial.

Warning

This is a free service, so there are some obvious limitations.

First, deploys are slooooooow. Second, bandwidth and running hours are limited.

Third, your service will shut down if there is no activity for more than 15 minutes:

This can cause a response delay of up to 30 seconds for the first request that comes

in after a period of inactivity.

Learn more about the limits of free Render accounts here.

https://render.com/docs/custom-domains
https://render.com/docs/free#free-web-services

What have I done?

A whole lot! By using Render, GitHub and Docker, you automated a bunch of things that

were done manually in the previous exercises. Here’s what was configured for you:

Process management with Docker & PHP-FPM

Reverse proxying with nginx

TLS/SSL encryption with Let’s Encrypt

Automated deployment

But this isn’t magic, it’s building of the work of others:

First, there’s the Dockerfile. It may not seem like a whole lot, but if you look at the

first line, you might notice that we are importing something from

richarvey/nginx-php-fpm . This is actually a popular (and fairly complex)

Dockerfile build by somebody else. This is what automatically sets up PHP-FPM and

nginx for us.

Second, there’s Render: despite its limitations in the free tier, we are getting free

hosting, automated deployments and encryption.

Finally, there’s GitHub whose API allows the connection between your repo and

Render to be very very easily configured.

Most of the technology and software that we have used throughout this course has been

made possible by the contributions of others in the open community. Consider how you

can contribute to open source projects by submitting code, writing documentation or

reporting bugs and issues.

Back to top

https://github.com/richarvey/nginx-php-fpm

