¥ Architecture & Deployment

2025-2026 v0.1.0 on branch main Rev: bf5a3ed8baf85ebafdf2c8031e836d37fa6b3121

Deplov web applications with a database to Render

The goal of this exercise is to deploy the same PHP Todolist application as in previous
exercises, but this time on the Render Platform-as-a-service (PaaS) cloud instead of your
own server in the Infrastructure-as-a-Service (laaS) Microsoft Azure Web Services cloud.

This illustrates the difference between the two cloud service models.

This guide assumes that you are familiar with Git and that you have a basic

understanding of what a Platform-as-a-Service is.

p
4§f Work on your local machine, NOT your cloud server. The goal of this exercise is
to deploy on Render, not your own server, to illustrate the difference between
Platform-as-a-Service (PaaS) and Infrastructure-as-a-Service (laaS).
N\

Table of contents

Tl Legend
! Install PostgreSOL

e macOS

Windows

o ! Getting_your Todolist fork up-to-date.

° ! Add the upstream as a remote

° ! Fetch data from upstream

° ! Push the new branch to GitHub

° ! Create and configure a PostgreSQOL Database on Render

° ! Create a Render account

° ! Create a PostgreSOL instance

° ! Connect to the database and create tables

. | _Deploy the application

https://archidep.ch/
https://github.com/ArchiDep/website/tree/main
https://github.com/ArchiDep/website/blob/bf5a3ed8baf85ebafdf2c8031e836d37fa6b3121/course/collections/_course/704-render-deployment/exercise.md
https://github.com/ArchiDep/php-todo-ex
https://archidep.ch/course/201-git/slides/
https://render.com/

e | Create a web service
[]

° Define environment variables

° ! _Deploy the web service

e & What have | done?

= Legend

Parts of this exercise are annotated with the following icons:

I Atask you MUST perform to complete the exercise

-~

An optional step that you may perform to make sure that everything is working

correctly, or to set up additional tools that are not required but can help you

The end of the exercise

K

M The architecture of the software you ran or deployed during this exercise.

3 Troubleshooting tips: how to fix common problems you might encounter

I Install PostgreSQL

PostgreSQL is a relational database management system that is very similar to MySQL.
We use it here because we can deploy it with one click on Render. Other benefits of using
PostgreSQL are performance, concurrency and SQL language support. You will need to
install PostgreSQL on your own machine in order to access the remote instance hosted on
Render using the ' psql command-Lline interface. The installation procedure differs on

macOS and Windows.

mac0S

To install PostgreSQL, you will be using Homebrew, the leading package manager for

Mac. You may install it directly from your terminal, by entering:

https://brew.sh/

$> /bin/bash —-c "$(curl —-fsSL https://raw.githubusercontent.com/Homebrew/install/|

Once this is done, you can easily install packages by writing - brew install followed

by the name of the package:

$> brew install postgresql@l8

Check that you have access to the psql command by entering:

$> psql ——version

psql (PostgreSQL) 18.x (Homebrew)

Windows

Go to the PostgreSQL downloads page and choose version 18.x for Windows x86-64.

Launch the installer and follow the installation instructions. You can decide to install only
the command-Lline tools. The following instructions assume you installed PostgreSQL in

the default directory on your Cdrive.

The installer does not take care of adding ' psql ' to your shell’s path. You will therefore

add it manually. Open Git Bash and enter the following commands:

$> echo 'export PATH=$PATH:"/c/Program Files/PostgreSQL/18/bin/""' >> ~/.bashrc

$> source .bashrc

Check that you have access to the psql command by entering:

$> psql —-version

psql (PostgreSQL) 18.x (Homebrew)

https://www.enterprisedb.com/downloads/postgres-postgresql-downloads

I Getting your Todolist fork up-to-date.

When you started working on the Todolist application, you forked an existing codebase
from a GitHub repository. While you were working on your configuration, the team with
access to the original repository implemented the changes necessary for a PaaS

deployment in a branch called docker-postgres .

By default, your fork does not track changes from the original repo, which is also
commonly referred to as the upstream. Let’s reconfigure our repository so that it can fetch

data from there.

©V Tip
If you do not remember where the Todolist repository is stored on your local

machine, you can simply clone it again from GitHub by running ' git clone

git@github.com:JohnDoe/php-todo-ex.git .Don'’t forget to replace JohnDoe

with your GitHub username.

| Add the upstream as a remote

From the terminal, move into your repository and add the upstream repository as a
remote (this time, leave ' ArchiDep in the URL, you want to use the original URL and not

your own):

$> cd php-todo-ex
$> git remote add upstream https://github.com/ArchiDep/php-todo-ex

Wl More information

Unlike the automated deployment exercise, you will not be pushing to this remote.
You couldn’t anyway, as you are not a collaborator on the upstream repository so you
do not have the right to push. Instead, you will use it to fetch up-to-date code from a

branch.

https://archidep.ch/course/602-git-automated-deployment/

| Fetch data from upstream

Fetch all commits from the upstream repository:

$> git fetch upstream

remote: Enumerating objects: 11, done.

remote: Counting objects: 100% (11/11), done.

remote: Compressing objects: 100% (6/6), done.

remote: Total 11 (delta 4), reused 11 (delta 4), pack-reused 0
Unpacking objects: 100% (11/11), 3.20 KiB | 545.00 KiB/s, done.
From https://github.com/ArchiDep/php-todo-ex

* [new branch] docker-postgres —> upstream/docker—-postgres

* [new branch] main -> upstream/main

As you can see, this gives you access to upstream branches, including one called
upstream/docker-postgres . With the next command you will copy the content of

that upstream branch into your own branch.

$> git switch —-c docker-postgres upstream/docker—postgres
branch 'docker-postgres' set up to track 'upstream/docker-postgres'.

Switched to a new branch 'docker-postgres'

This command will create a new branch in your local repository, based on the contents of
the upstream branch. This command automatically switches you to the new branch. If you
browse through the project in a code editor or by using ' cat ,you should now be able to

see changes to todolist.sql ,as well as a mysterious new Dockerfile .

Wl More information

Docker is a tool designed to make it easier to create, deploy, and run applications by
using containers. Containers allow a developer to package up an application with all
of the parts it needs, such as libraries and other dependencies, and ship it all out as

one package.A Dockerfile is a text file that contains instructions for how to build a

Docker image. We will learn more about Docker later in the course, and you can of

course learn more on the Docker website.

I Ppush the new branch to GitHub

$> git push origin

* [new branch] docker—-postgres —> docker—-postgres

You can go check on GitHub whether your new branch has been pushed, by displaying the

branch dropdown:

P main ~ P 2 branches > 0tags

Switch branchesftags »
d
[Find or create a branch...] deletion, or requil
Branches Tags
v main default fcomem-archid

docker-postgres

Wiew all branches

¥ Let’s note that this whole step has nothing to do with PaaS deployments in and of
themselves. It is just a corollary of some code changes that had to be made for the

Todolist to work with PostgreSQL and Docker.

I Create and configure a PostgreSQL Database on Render

Instead of manually configuring a Linux server, you will be provisioning a couple of

services on Render. The first is a PostgreSQL Database.

https://www.docker.com/

! Create a Render account

Start by creating a new Render account. If you choose to register using GitHub, you will be

able to skip linking these two accounts together later:

Sign up for Render

) GitHub & GitLab (5 Google

Email

Password

B Email me about Render product updates

COMPLETE SIGN UP

By signing up you agree to our term

Already have an account?

| Create a PostgreSQL instance

Sign-in to your Render account and click the new PostgreSQL button:

https://dashboard.render.com/register

Dashboard Blueprints

render

Overview

Get up and running in minutes

E Static Sites

Static sites are automatically served
over a global CDN. Add a custom
domain and get free, fully-managed
SSL.®

MNew Static Site

@ Cron Jobs

with cron jobs you can schedule
any command or script to runon a
regular interval. @

New Cron Job

Warning

Env Groups Docs

P

'=’= Web Services

Web services include zero-
downtime deploys, persistent
storage and PR previews. Scale up
and down with ease. @

New Web Service

Q PostgreSQL

Fully-managed hosted PostgreSQL
with internal and external
connectivity, and automated daily
backups. @

New PostgreSQL

Community

e _

Private Services

Private services are only accessible
within your Render network and can
speak any protocol. @

New Private Service

rsd Redis

A cloud based in-memory key value
datastore. Render offers fully
managed hosted Redis instances. &

New Redis

Background Workers
~—r 9

Background workers are suitable for
long running processes like
consumers for queues and
streaming. &

MNew Worker

~ Blueprints

A Blueprint specifies your
Infrastructure as Code in a single
file. Use it ta set up all your services
at once. @

New Blueprint

You can only have 1 active PostgreSQL deployment in the free Render tier. If you

want more, you gotta pay.

This will take you to the following setup page, where you will need to configure:

e A name for your deployment

e A name for the database

e Ausername

e The region where the database is deployed (pick the one closest to your customers).

A password will be automatically generated for you.

render Dashboard Blueprints Env Groups Docs Community Help _

New PostgreSQL

Name © todolist

Database © todolist

User todolist

Region Frankfurt (EU Central) +
The region where your Database runs.

PostgreSQL Version 15 =

Datadog API Key ©

Please enter your payment information to select an instance type with higher limits.

Instance Type RAM CPU Storage Price
O Free 256 MB Shared 1GB $0 / month
Starter 256 MB Shared 1GB $7 / month
Standard 1GB 1CPU 16 GB $20 [/ month
Pro 4GB 2 CPU 96 GB $95 / month
Pro Plus 8 GB 4 CPU 256 GB $185 / month

Need a custom plan? We support up to 512 GB RAM, 64 CPUs, and 5 TB storage.

‘ @ Free databases will expire in 90 days and will be deleted if not upgraded. Learn more about free instance type limits.

When you are done, click Create Database and your PostgreSQL database will be
provisioned automatically. Be patient, this process can take a few minutes. Once it is
deployed you will be taken to a page with information pertaining to your new database

and you should see the following:

Status Available

| Connect to the database and create tables

At this point, you have a database. Congratulations. But you still need to set its tables up.
As you did in the first Todolist tutorial, you will be running the ' todolist.sql script on

the database, albeit remotely.

Wl More information

The script is a bit different than the previous one because of two factors. First, we
are using PostgreSQL instead of MySQL. Second, we do not need to create a

database. As a matter of fact, this script is a bit simpler than the previous one.

Go back to your terminal and make sure you are in your repository and on the ' docker-

postgres branch:

$> git branch —-show-current

docker—postgres

If not, check out the correct branch with the git switch docker-postgres

command.

Next, connect to your PostgreSQL database from the command line. On the Render
dashboard, you should be able to see a Connections section. This is where all the
connection information to your database lives. You will need this information more than

once, so keep this tab open.

The information you need to connect to the database shell is located in the PSQL
Command field. You can display or copy the contents of this field by clicking the icons to

the left of the hidden characters.

Connections

Hostname @ dpg-cehh6792i3mgv19i29sg-a

Port 5432

Database todolist_45ig

Username todolist

Password g Gy eessssssssssssssssssssssssssasas
Internal Database URL g (E) eSS EEEEE It EEEEEERIIIIIIRTS
External Database URL g (E) eSS EEEEE It EEEEEERIIIIIIRTS
PSQL Command) (E) eSS EEEEE It EEEEEERIIIIIIRTS

Copy and paste the command in your terminal. This will connect you directly to the

remote database deployed by Render.

$> PGPASSWORD=your_password psql -h your_host.frankfurt-postgres.render.com -U yo
psql (14.6 (Homebrew), server 15.1)
WARNING: psql major version 16, server major version 16.

Some psql features might not work.
SSL connection (protocol: TLSv1.3, cipher: TLS_AES_128_GCM_SHA256, bits: 128, com
Type "help" for help.

your_database=>

You can now execute the todolist.sql file:

your_database=> \1i todolist.sql

CREATE TABLE

©V Tip

You can make sure the script worked by displaying all the ' todo table’s columns:

your_database=> \d+ todo

Column | Type | Default
id | integer | nextval('todo_id_seq'::regclas
title | character varying(2048) |
done | boolean | false
created_at | timestamp without time zone | CURRENT_TIMESTAMP

Now quit the PostgreSQL shell by entering ' \q .

I Deploy the application

Now that you have a database in place, it is time to deploy the web application itself.

| Create a web service

From your Render dashboard, hover over the bluish “New” button and select Web Service.

Our pricing will change starting January 1, 2023. Read more on our new pricing page. X

render Dashboard Blueprints Env Groups Docs Community Help _ v

£ Static Site

@ Web Service

& Private Service

Overview tay

Web Service

Web services are kept up and
running at all l‘lmas with native % Background Worker
NAME STATUS SSL and HTTP/2 support. Add a 10N v LAST DEPLOYED
persistent disk or custom
domain. Scale up and down Cron Job
with ease.
Learn more. = PostgreSQL

= todolist Available nkfurt 6 days ago

= Redis

Blueprint

Render web services need to be connected to a Git repository hosted either on GitHub or
GitLab. This step will allow you to automate deployments from your codebase. Instead of

manually setting up hooks like in the Automated Deployment exercise, you will rely on

Render to take care of this for you.

! Similar to GitHub, [GitLab][Gitlab] is also a version control platform that allows
developers to manage and track changes to their codebase. They both use the
Git version control system. Although they share the majority of their feature
sets, GitLab can be self-hosted, which means that you can install and run it on
your own servers. This can be useful for organizations that want to have more
control over their infrastructure or that have specific security or compliance

requirements.

If you are signed up using GitHub, you should see a list of all the repositories that can be
used to create a web service. If not, you will need to follow the procedure to link your
GitHub account to Render. Choose the appropriate repository for the purposes of this

deployment and click connect.

https://archidep.ch/course/602-git-automated-deployment/

Our pricing will change starting January 1, 2023. Read more on our new pricing page. X

render Dashboard Blueprints Env Groups Docs Community Help _

Create a new Web Service

Connect your Git repository or use an existing public repository URL.

Connect a repository ©) GitHub
9
’ Q | & _
Q :
b Configure account
g]
- I 2
€) simonpinkas / comem-archidep-php-todo-exercise - 6 daysago
- I)

- I D
it} Configure account
o I

& GitLab

Public Git repository

Use a public repository by entering the URL below. Features like PR Previews and Auto-Deploy are not available if
the repository has not been configured for Render.

Wl More information

As you can see, you can connect any public Git repository to Render by entering an
URL in the field.

Once you have connected the repository, you will need to configure the deployment. Make
sure you set the following basic options up:
A name for your web service.
The region where the service is deployed (pick the one closest to your customers).
The branch from your repository that should be deployed (docker—postgres).
The runtime environment (should automagically have Docker selected).

The pricing tier.

Our pricing will change starting January 1, 2023. Read more on our new pricing page. X

render Dashboard Blueprints Env Groups Docs Community Help _

You are deploying a web service for simonpinkas/comem-archidep-php-todo-exercise.

Name
) todo-render
A unique name for your web service.

Region
. . . Frankfurt (EU Central) ~
The region where your web service runs. Services must be

in the same region to communicate privately and you

currently have services running in Frankfurt.

Branch dock
ocker-postgres v
The repositery branch used for your web service. postg

Root Directory Optional

Defaults to repository root. When you specify a

root directory that is different from your repository root,
Render runs all your commands in the specified directory
and ignores changes outside the directory.

Environment
Docker v

The runtime environment for your web service.

Please enter your payment information to select an instance type with higher limits.

Instance Type RAM CPU Price
O Free 512 MB Shared $0 / month
Starter 512 MB 0.5 CPU $7 / month

| Define environment variables

In addition to these basic options, we will directly set up our environment variables on
this page. Scroll down a bit and click the Advanced button. From there, you can add an
arbitrary amount of envionment variables. You will use the following ones to connect

your application to the PostgreSQL database you created earlier. All of the values can be

found in the connection panel of your database’s dashboard:

Environment variable Description
DB_HOST The host at which the PostgreSQL database can be reached.
DB_PORT The port at which the PostgreSQL database can be reached.

DB_NAME The name of the PostgreSQL database.

Environment variable Description

DB_USER The PostgreSQL user to connect as.

DB_PASS The password of the PostgreSQL user.

Our pricing will change starting January 1, 2023. Read more on our new pricing page. X

render Dashboard Blueprints Env Groups Docs Community Help ,-Q _

v

Advanced X

Use environment variables to store API keys and other configuration values and secrets. You can access them in your code like regular environment variables, for example with
os.getenv(} in Python or process.env in Node.

DB_HOST

B || | &

DB_PORT 5432

DB_NAME

DB_USER

N

DB_PASS

Add Environment Variable

Wl More information

You can also store secret files (like .env or .npmrc files and private keys) in Render.
These files can be accessed during builds and in your code just like regular files. You
can upload them right in this configuration panel or from the service’s dashboard,

post-deployment.

I Deploy the web service

Once you are done configuring your deployment, you may click the Create Web Service
button at the bottom of the page. This will take you to the deployment page, where you

will be able to follow along the logs and discover the domain Render has attributed to

your app.

Our pricing will change starting January 1, 2023. Read more on our new pricing page. X

render Dashboard Blueprints Env Groups Docs Community Help ,9‘ _ ~

WEB SERVICE

&) todo-render € simonpinkas/comem-archidep-php-todo-exercise ¥ docker-postgres Connect v Manual Deploy v

https:/ftodo-render-cscp.onrender.com (©

Events @ Builds too slow? Upgrade to a paid plan to go faster. Learn more about free instance type limits.

Logs
. December 27, 2022 at 3:03 PM
Disks

20194ae Update Dockerfile
Environment

shell
a) Maximize Scroll to top

PRs

2022/12/27 14:84:23 [info] 28#20: *2 client closed connection while waiting for request, client: 127.8.8.1, server: 0.0.0.

Jobs

Metrics 2022/12/27 14:04:23 [info] 21#21: #3 client closed connection while waiting for request, client: 127.0.0.1, server: 2.0.0.

Sealing 2822/12/27 14:84:23 [info]l 22#22: #4 client closed connection while waiting for request, client: 127.0.8.1, server: 8.0.8.
N 27-Dec-2022 14:04:23] NOTICE: fpm is running, pid 17

settings L] pn 9 P

[27-Dec-2622 14:84:23] NOTICE: ready to handle connections
2022/12/27 14:84:24 [info] 19#19: *5 client closed connection while waiting for request, client: 127.8.8.1, server: 0.8.0.

2022-12-27 14:84:24,274 INFO success: php-fpm entered RUNNING state, process has stayed up for > than 1 seconds (startsecs

2022-12-27 14:04:24,274 INFO success: nginx entered RUNNING state, process has stayed up for > than 1 seconds (startsecs)

Scroll to bottom

Once the deployment has succeeded, you will be able to visit the todolist at the URL

provided by Render. You may also use a custom domain by following this tutorial.

Warning

This is a free service, so there are some obvious limitations.

First, deploys are slooooooow. Second, bandwidth and running hours are limited.
Third, your service will shut down if there is no activity for more than 15 minutes:
This can cause a response delay of up to 30 seconds for the first request that comes

in after a period of inactivity.

Learn more about the limits of free Render accounts here.

https://render.com/docs/custom-domains
https://render.com/docs/free#free-web-services

= What have | done?

A whole lot! By using Render, GitHub and Docker, you automated a bunch of things that

were done manually in the previous exercises. Here’s what was configured for you:

Process management with Docker & PHP-FPM
Reverse proxying with nginx
TLS/SSL encryption with Let’s Encrypt

Automated deployment

But this isn’t magic, it’s building of the work of others:

First, there’s the Dockerfile. It may not seem like a whole lot, but if you look at the
first line, you might notice that we are importing something from

richarvey/nginx—php=fpm . This is actually a popular (and fairly complex)

Dockerfile build by somebody else. This is what automatically sets up PHP-FPM and

nginx for us.

Second, there’s Render: despite its limitations in the free tier, we are getting free

hosting, automated deployments and encryption.

Finally, there’s GitHub whose API allows the connection between your repo and

Render to be very very easily configured.

Most of the technology and software that we have used throughout this course has been

made possible by the contributions of others in the open community. Consider how you

can contribute to open source projects by submitting code, writing documentation or

reporting bugs and issues.

T Backto top

https://github.com/richarvey/nginx-php-fpm

