
Architecture & Deployment

2025-2026 v0.1.0 on branch main Rev: 6d218297357081f922e8a7dd1d5cd8471c27fa79

Command Line Cheatsheet

Useful commands for Bash (Bourne-again shell), the default shell for most Linux

distributions and macOS. Most of these commands will also work with more advanced

shells like ZSH (Z shell).

I don’t remember anything!

Getting help (man, --help)

Navigating

Where am I? (pwd)

What is there? (ls)

Move around (cd)

Special paths (., .., ~)

Reading

What’s in this file? (cat, head, tail, less)

Writing

Create a directory (mkdir)

Create a file (echo, touch)

Edit a file (nano)

Copy stuff (cp)

Move stuff (mv)

Delete stuff (rm)

Finding stuff

Find files (find)

Find lines in files (grep)

Environment variables

$PATH

Do I have that command? (which)

Miscellaneous

Table of contents

https://archidep.ch/
https://github.com/ArchiDep/website/tree/main
https://github.com/ArchiDep/website/blob/6d218297357081f922e8a7dd1d5cd8471c27fa79/course/collections/_cheatsheets/command-line/cheatsheet.md
https://en.wikipedia.org/wiki/Bash_(Unix_shell)
https://en.wikipedia.org/wiki/Z_shell

I don’t remember anything!

Use the history command to list all the commands you previously typed:

$> history

24 ls

25 cd foo

26 ssh jde@archidep.ch

27 cat file.txt

Note that each command is prefixed by a number. Type an exclamation mark followed by

that number to retrieve the command:

$> !26

$> ssh jde@archidep.ch

If you’re looking for a specific command, you can filter your command history by piping it

into the grep command. For example, this will search for all commands containing the

word “ssh” in your history:

$> history | grep ssh

19 ssh-keygen --help

20 ssh-keygen

26 ssh jde@archidep.ch

Can I write a long command on multiple lines?

Getting help (man , --help)

man ls displays the manual of the ls command on Unix systems.

help ls displays the help of the ls command in Git Bash on Windows.

git --help displays the help of the git command. Many (but not all)

commands provide a help page.

Navigating

Where am I? (pwd)

Use the pwd command, meaning print working directory:

$> pwd

/Users/jde/Downloads

What is there? (ls)

Use the ls command, meaning list:

Command Effect

ls List the files in the current directory (invisible files are hidden)

ls -a List all files in the current directory, including invisible ones

ls -ahl List all files in the current directory, also displaying their mode, owner, group, size and
last modification date

ls foo List all files in the foo directory inside the current directory

Move around (cd)

Use the cd command, meaning change directory:

Command Effect

cd . Move into the current directory (wheeeeee)

cd foo Move into the foo directory inside the current directory

cd ./foo Same as previous

cd foo/bar Move into the bar directory inside the foo directory inside the current
directory

cd ./foo/bar Same as previous

cd .. Move into the parent directory (e.g. into /foo if you are in /foo/bar)

cd ../.. Move into the parent directory of the parent directory (e.g. into / if you are in
/foo/bar)

cd ~ Move into your home directory

cd Same as previous

cd / Move to the root of the file system

Special paths (. , .. , ~)
Path Where

. The current directory (the same as indicated by pwd)

.. The parent directory (e.g. /foo if you are in /foo/bar)

~ Your user’s home directory (e.g. /Users/username in macOS)

/ The file system’s root directory on Unix systems

https://en.wiktionary.org/wiki/whee

Reading

What’s in this file? (cat , head , tail , less)

Display the entire contents of a file in the CLI with the cat command (as in

concatenate):

$> cat file.txt

Hello

World

Display the first or last N lines (10 by default) of a file with the head and tail

commands, respectively:

$> head file.txt

$> head -n 100 file.txt

$> tail file.txt

$> tail -n 50 file.txt

Display a large file in interactive mode, allowing you to scroll with the up and down

arrow keys (exit this mode by typing the letter q , as in quit):

$> less file.txt

Writing

Create a directory (mkdir)

mkdir stands for make directory.

Create one directory in the current directory:

$> mkdir foo

Create a directory and all missing intermediate directories:

$> mkdir -p foo/bar/baz/qux

Create a file (echo , touch)

Create an empty file:

$> touch file.txt

Create (or overwrite) a file containing one line:

$> echo "Hello World!" > file.txt

Tip

Do the same with the tee command if you need to create a file with

administrative privileges:

$> echo "Hello World!" | sudo tee file.txt

https://en.wikipedia.org/wiki/Tee_(command)

Append one line at the end of a file (also creates the file if it does not exist):

$> echo "Hello World!" >> file.txt

Tip

Again with the tee command if you need to create a file with administrative

privileges:

$> echo "Hello World!" | sudo tee -a file.txt

Edit a file (nano)

Edit a file with nano:

$> nano /path/to/file.txt

Tip

Nano will always display available commands at the bottom of the screen. Ctrl-X

is the one you will use most often, which saves and exits. Note that nano will ask you

to confirm the file name. Just press Enter (unless you want to save your changes to

another file, to keep the original one).

If you need superuser privileges to access the file, you can use sudo :

$> sudo nano /path/to/file.txt

Copy stuff (cp)

Copy a file to another location:

$> cp oldname.txt newname.txt

$> cp foo/oldname.txt bar/baz/newname.txt

Recursively copy a directory and all its contents:

cp -R olddirectory newdirectory

Move stuff (mv)

Move a file (or directory):

$> mv file.txt /somewhere/else

$> mv directory /somewhere/else

Delete stuff (rm)

Delete (or remove) a file:

$> rm file.txt

You can also delete a directory with rm by adding the -r (recursive) option.

$> rm -r directory

Be EXTREMELY careful when you type this command. One wrong move and you

could permanently lose a lot of files (e.g. if you misspell the name of the

directory you want to delete).

Finding stuff

Find files (find)

Recursively list all files in the current directory:

$> find .

Recursively list all JavaScript files in the current directory:

$> find . -name "*.js"

Find lines in files (grep)

Recursively find all files in the current directory containing the word “foo”:

$> grep -R foo .

Environment variables

Display an environment variable:

$> echo $FOO

$> echo $PATH

Set an environment variable (it will be gone when you close the CLI):

$> export FOO=bar

$> echo $FOO

To be able to keep this environment variable in all future CLIs, save the export

FOO=bar line to your ~/.bash_profile file (create it if it doesn’t exist).

$PATH

$PATH is an environment variable that contains a semicolon-delimited (:) list of

directories. When you type a command such as git , Bash will look for a binary file

named git in each of these directories one by one and execute the first one it finds.

If it doesn’t find such an executable, it will return a command not found error.

$> echo $PATH

/usr/local/bin:/usr/bin:/bin:/usr/sbin:/sbin

You can modify your path by adding export statements to your ~/.bash_profile

file (create it if it doesn’t exist):

Add the /foo directory to the beginning of $PATH

export PATH="/foo:$PATH"

Add the /opt/local/bin directory to the beginning of $PATH

export PATH="/opt/local/bin:$PATH"

Do I have that command? (which)

Locate an executable in the $PATH with the which command:

$> which git

/usr/local/bin/git

$> which foo

foo not found

Miscellaneous

Can I write a long command on multiple lines?

$> echo \

 "Hello" \

 "World"

Hello World

Back to top

