¥ Architecture & Deployment

2025-2026 v0.1.0 on branch main Rev: 6d218297357081f922e8a7dd1d5cd8471c27fa79

Comimand Line Cheatsheet

Useful commands for Bash (Bourne-again shell), the default shell for most Linux
distributions and macOS. Most of these commands will also work with more advanced

shells like ZSH (Z shell).

Table of contents

| don’t remember anything!

* Navigating

e Where am I? (pwd),

e What is there? (Ls)

° Move around (cd)

* Special paths (,,..,~)
e Reading

e What’s in this file? (cat, head, tail, less)

e Writing

e Create a directory (mkdir)

o C(Create a file (echo, touch)

e Edit a file (nano)
e Move stuff (mv)

e Delete stuff (rm)

e Finding stuff
e Find files (find)

e Find lines in files (grep)

e Environment variables

« $PATH

e Do | have that command? (which)

e Miscellaneous

https://archidep.ch/
https://github.com/ArchiDep/website/tree/main
https://github.com/ArchiDep/website/blob/6d218297357081f922e8a7dd1d5cd8471c27fa79/course/collections/_cheatsheets/command-line/cheatsheet.md
https://en.wikipedia.org/wiki/Bash_(Unix_shell)
https://en.wikipedia.org/wiki/Z_shell

e (Can | write a long command on multiple lines?

| don’t remember anything!

Use the history command to list all the commands you previously typed:

$> history

24 1s

25 cd foo

26 ssh jde@archidep.ch
27 cat file.txt

Note that each command is prefixed by a number. Type an exclamation mark followed by

that number to retrieve the command:

$> 126
$> ssh jde@archidep.ch

If you're looking for a specific command, you can filter your command history by piping it
into the - grep ' command. For example, this will search for all commands containing the

word “ssh” in your history:

$> history | grep ssh
19 ssh-keygen ——help
20 ssh-keygen

26 ssh jde@archidep.ch

Getting help (man , —-help)

e man ls displays the manual of the 1s command on Unix systems.
e help 1s displays the help of the ' 1s ' command in Git Bash on Windows.

e git —-help displays the help of the git command.Many (but not all)

commands provide a help page.

Navigating

Where am 1? (pwd)

Use the ' pwd ' command, meaning print working directory:

$> pwd
/Users/jde/Downloads

What is there? (1s)

Use the ' 1s command, meaning list:

Command Effect

1s List the files in the current directory (invisible files are hidden)

1s -a List all files in the current directory, including invisible ones

1s —ahl List all files in the current directory, also displaying their mode, owner, group, size and

last modification date

1s foo List all files in the ' foo ' directory inside the current directory

Move around (cd)

Use the ' cd command, meaning change directory:

Command Effect
cd . Move into the current directory (wheeeeee)
cd foo Move into the ' foo directory inside the current directory
cd ./foo Same as previous
cd foo/bar Move into the | bar directory inside the ' foo directory inside the current
directory
cd ./foo/bar Same as previous
cd .. Move into the parent directory (e.g.into ' /foo ifyouarein /foo/bar)
cd ../.. Move into the parent directory of the parent directory (e.g.into ' / if you are in
/foo/bar)
cd ~ Move into your home directory
cd Same as previous
cd / Move to the root of the file system

Special paths (. , .., ~)

Path Where
The current directory (the same as indicated by ' pwd)
The parent directory (e.g.. /foo ifyouarein' /foo/bar)
~ Your user’s home directory (e.g. /Users/username in macQS)
/ The file system’s root directory on Unix systems

https://en.wiktionary.org/wiki/whee

Reading

What's in this file? (cat , head , tail , less)

Display the entire contents of a file in the CLI with the cat command (as in

concatenate):

$> cat file.txt
Hello
World

Display the first or last N lines (10 by default) of a file with the head and tail

commands, respectively:

$> head file.txt
$> head -n 100 file.txt
$> tail file.txt

$> tail -n 50 file.txt

Display a large file in interactive mode, allowing you to scroll with the up and down

arrow keys (exit this mode by typing the letter (q , as in quit):

$> less file.txt

Writing

Create a directory (mkdir)

mkdir stands for make directory.

Create one directory in the current directory:
$> mkdir foo

Create a directory and all missing intermediate directories:
$> mkdir -p foo/bar/baz/qux

Create afile (echo , touch)

Create an empty file:
$> touch file.txt

Create (or overwrite) a file containing one line:

$> echo "Hello World!" > file.txt

© Tip

Do the same with the ' tee _.command if you need to create a file with

administrative privileges:

$> echo "Hello World!" | sudo tee file.txt

https://en.wikipedia.org/wiki/Tee_(command)

Append one line at the end of a file (also creates the file if it does not exist):

$> echo "Hello World!" >> file.txt

@ Tip
Again with the ' tee command if you need to create a file with administrative
privileges:

$> echo "Hello World!" | sudo tee —a file.txt

Edit a file (nano)

Edit a file with nano:

$> nano /path/to/file.txt

©V Tip
Nano will always display available commands at the bottom of the screen.’ Ctr1-X
is the one you will use most often, which saves and exits. Note that nano will ask you

to confirm the file name. Just press Enter (unless you want to save your changes to

another file, to keep the original one).

If you need superuser privileges to access the file, you can use ' sudo :

$> sudo nano /path/to/file.txt

Copy stuff (cp)

Copy a file to another location:

$> cp oldname.txt newname.txt

$> cp foo/oldname.txt bar/baz/newname.txt
Recursively copy a directory and all its contents:
cp -R olddirectory newdirectory
Move stuff (mv)
Move a file (or directory):

$> mv file.txt /somewhere/else

$> mv directory /somewhere/else
Delete stuff (rm)
Delete (or remove) a file:
$> rm file.txt
You can also delete a directory with - rm ' by adding the ' —r (recursive) option.

$> rm -r directory

-
(O Be EXTREMELY careful when you type this command. One wrong move and you

could permanently lose a lot of files (e.g. if you misspell the name of the

directory you want to delete).

Finding stuff

Find files (find)

Recursively list all files in the current directory:
$> find .
Recursively list all JavaScript files in the current directory:
$> find . —-name "x.js"
Find lines in files (grep)
Recursively find all files in the current directory containing the word “foo”:

$> grep -R foo .

Environment variables

Display an environment variable:

$> echo $F00
$> echo $PATH

Set an environment variable (it will be gone when you close the CLI):

$> export FOO=bar
$> echo $FO0O

To be able to keep this environment variable in all future CLIs, save the | export

FOO=bar line to your ~/.bash_profile file (create it if it doesn’t exist).

$PATH

$PATH is an environment variable that contains a semicolon-delimited (:) list of
directories. When you type a command such as ' git , Bash will look for a binary file

named git in each of these directories one by one and execute the first one it finds.

If it doesn’t find such an executable, it will return a ' command not found error.

$> echo $PATH

/usr/local/bin:/usr/bin:/bin:/usr/sbin:/sbin

You can modify your path by adding ' export statements to your ~/.bash_profile

file (create it if it doesn’t exist):

Add the /foo directory to the beginning of $PATH
export PATH="/foo:$PATH"

Add the /opt/local/bin directory to the beginning of $PATH
export PATH="/opt/local/bin:$PATH"

Do | have that command? (which)

Locate an executable in the ' $PATH with the which command:

$> which git
/usr/local/bin/git

$> which foo

foo not found

Miscellaneous

Can | write a long command on multiple lines?

$> echo \
"Hello" \
"World"

Hello World

T Backto top

