¥ Architecture & Deployment

2025-2026 v0.1.0 on branch main Rev: 6d218297357081f922e8a7dd1d5cd8471c27fa79

Git Cheatsheet

If you want to learn more about Git, read the Pro Git book (online & free).

Table of contents

e Best practices

e One-time configuration

e Configure your identity

e Automagically exclude annoying_.DS_Store files from your commits (macQS only),

e Frequent operations

e (Create a new empty repository

e Put an existing_project on GitHub

e Push my latest changes to the GitHub repository

o  Pull the latest changes from the GitHub repository

e Add an SSH key to my GitHub account

Best practices

* Commit early and often, perfect later (Seth Robertson)

Git only takes full responsibility for your data when you commit. If you fail to commit
and then do something poorly thought out, you can run into trouble. Additionally,
having periodic checkpoints means that you can understand how you broke

something.

* Writing a good commit message (GitKraken)



https://archidep.ch/
https://github.com/ArchiDep/website/tree/main
https://github.com/ArchiDep/website/blob/6d218297357081f922e8a7dd1d5cd8471c27fa79/course/collections/_cheatsheets/git/cheatsheet.md
https://git-scm.com/book/en/v2
https://sethrobertson.github.io/GitBestPractices/
https://sethrobertson.github.io/GitBestPractices/
https://www.gitkraken.com/learn/git/best-practices/git-commit-message
https://www.gitkraken.com/learn/git/best-practices/git-commit-message

If by taking a quick look at previous commit messages, you can discern what each
commit does and why the change was made, youre on the right track. But if your
commit messages are confusing or disorganized, then you can help your future self
and your team by improving your commit message practices with help from this

article.

¢ Conventional Commits

If you want to go further, look at Conventional Commits, a specification for adding

human and machine readable meaning to commit messages.

e (Choose a branching workflow:

A successful branching_model (for large teams)

A successful branching_model considered harmful

Branch-per-feature

Trunk-based development

e Enable Git Rerere

One-time configuration

Configure your identity

You must configure identity using your user name and e-mail address. This is important
because every Git commit uses this information, and it’s immutably baked into every
commit you make. You should obviously replace your "John Doe" and

john.doe@example.com with your own information.

$> git config —-—-global user.name "John Doe"

$> git config ——-global user.email john.doe@example.com


https://www.conventionalcommits.org/
http://nvie.com/posts/a-successful-git-branching-model/
https://barro.github.io/2016/02/a-succesful-git-branching-model-considered-harmful/
http://dymitruk.com/blog/2012/02/05/branch-per-feature/
https://trunkbaseddevelopment.com/
https://git-scm.com/book/en/v2/Git-Tools-Rerere

Automagically exclude annoying .ps_store files from your commits
(mac0s only)

You can create a global ignore file in your home directory to ignore them:
$> echo ".DS_Store" >> ~/.gitignore

Run the following command to configure Git to use this file. You only have to do it once

on each machine:

$> git config ——global core.excludesfile ~/.gitignore

Frequent operations

Create a new empty repository

$

$> mkdir my-new-project

\Y

cd /path/to/projects

$> cd my-new-project

$> git init

Put an existing project on GitHub

$> cd /path/to/projects/my-project
$> git init

If you don’t want to commit some files, create a .gitignore file listing them each on

one line, e.q.



*. log

node_modules

Commit the project’s files:

$> git add —--all

$> git commit -m "Initial commit"

Create your new repository on GitHub, copy the SSH clone URL (e.g.
git@github.com:MyUser/my-project.git ),and add it as a remote:

$> git remote add origin git@github.com:MyUser/my—-project.git
Push your ' main branch and track it (with the | —u ' option):

$> git push —u origin main

Push my latest changes to the GitHub repository
Commit and push your changes:

$> git add ——all
$> git commit -m "My changes"

$> git push origin main
If GitHub rejects your push, you should pull the latest changes first.

Pull the latest changes from the GitHub repository

If you have uncommitted change (check with git status ),stage and commit them:


http://github.com/

$> git add —--all

$> git commit -m "My changes"
Pull the changes:
$> git pull

If you've worked on the same files, there might be a merge. If there is a merge conflict,

resolve it and complete the merge with git commit .

Add an SSH key to my GitHub account

See Adding_a new SSH key to your GitHub account.

T Backto top


https://mediacomem.github.io/comem-archidep/2024-2025/subjects/git-branching/?home=MediaComem%2Fcomem-archidep%23readme#33
https://docs.github.com/en/authentication/connecting-to-github-with-ssh/adding-a-new-ssh-key-to-your-github-account

