
Architecture & Deployment

2025-2026 v0.1.0 on branch main Rev: 03b1cdace14bb0b0720e24be862097b3792214ea

System Administation Cheatsheet

This cheatsheet is designed to help students in this course quickly find and remember key

sysadmin commands and concepts. Use it as a handy reference to make your work with

servers and system administration tasks easier.

The basics

How do I connect to my server with SSH? (ssh)

Who am I? (whoami & id)

How do I change my password? (passwd)

What’s happening?

Where’s all my CPU and/or memory gone? (htop or btm)

What’s running? (ps or procs)

How much disk space is left? (df or duf)

Administration

How do I change my username? (usermod)

How do I create another user? (useradd)

How do I find and kill a naughty process? (ps, kill)

The changes to my systemd service are not taken into account! (systemctl daemon-reload)

My systemd service is not working! (systemctl status & journalctl)

List a server’s SSH host key fingerprints

Installing & upgrading

How do I know what is installed? (apt list)

How do I find new stuff to install? (apt search, apt info, apt show)

How do I install stuff? (apt install)

How do I keep my server up-to-date? (apt update, apt upgrade & apt full-upgrade)

Daemons using outdated libraries

System restart required

How do I get rid of stuff? (apt remove & apt autoremove)

Table of contents

https://archidep.ch/
https://github.com/ArchiDep/website/tree/main
https://github.com/ArchiDep/website/blob/03b1cdace14bb0b0720e24be862097b3792214ea/course/collections/_cheatsheets/sysadmin/cheatsheet.md

The basics

A few basic and/or essential commands.

How do I connect to my server with SSH? (ssh)

Connect to the server at the IP address W.X.Y.Z as the jde user:

$> ssh jde@W.X.Y.Z

Connect to the server at the domain example.com as the jde user:

$> ssh jde@example.com

Who am I? (whoami & id)

If you don’t remember who you are currently logged in (and have forgotten that this

information is generally displayed at the very start of your prompt), you can use the

whoami command:

$> whoami

jde

You can also use the id command which also shows the GID (group ID) of your user’s

main group, and also the other groups your user may belong to:

What about apt-get and apt-cache?

My post-receive Git hook is not executing!

$> id

uid=1000(jde) gid=1000(jde) groups=1000(jde),4(adm),24(cdrom),27(sudo),30(dip),105

How do I change my password? (passwd)

$> passwd

What’s happening?

These commands allow you to see (and control) what is happening on your server.

Where’s all my CPU and/or memory gone? (htop or btm)

Run htop to see an interactive summary of the state of your server:

Tip

Exit with q (quit) or Ctrl-C .

Install bottom and run btm for a more complete and modern alternative:

https://github.com/ClementTsang/bottom

Tip

Exit with q (quit) or Ctrl-C .

What’s running? (ps or procs)

Run ps (process status) to list running interactive processes that belong to your user:

$> ps

 PID TTY TIME CMD

 9909 pts/1 00:00:00 bash

 9936 pts/1 00:00:00 ps

Add the -f (full format) option for more information on these processes:

$> ps -f

UID PID PPID C STIME TTY TIME CMD

soy 9909 9908 0 23:40 pts/1 00:00:00 -bash

soy 9937 9909 0 23:44 pts/1 00:00:00 ps -f

Add the -e (every) option to include every process, not just yours:

$> ps -ef

UID PID PPID C STIME TTY TIME CMD

root 1 0 0 Oct06 ? 00:00:04 /sbin/init

root 2 0 0 Oct06 ? 00:00:00 [kthreadd]

root 3 2 0 Oct06 ? 00:00:00 [pool_workqueue_release]

root 4 2 0 Oct06 ? 00:00:00 [kworker/R-rcu_g]

root 5 2 0 Oct06 ? 00:00:00 [kworker/R-rcu_p]

Tip

Add the --forest option to see the hierarchical relationship between parent

processes and their children.

Pipe this through grep to find specific processes:

$> ps -ef | grep ssh

root 1074 1 0 Oct06 ? 00:00:00 sshd: /usr/sbin/sshd -D [liste

root 8852 1074 0 22:27 ? 00:00:00 sshd: soy [priv]

soy 8985 8852 0 22:27 ? 00:00:00 sshd: soy@pts/0

root 9791 1074 0 23:40 ? 00:00:00 sshd: soy [priv]

soy 9908 9791 0 23:40 ? 00:00:00 sshd: soy@pts/1

Install procs if you want a modern alternative to ps . Running procs is equivalent to

ps -ef but it is also interactive:

 PID:▲ User │ TTY CPU MEM CPU Time │ Command

 │ [%] [%] │

 1 root │ 0.0 1.6 00:00:04 │ systemd

 2 root │ 0.0 0.0 00:00:00 │ kthreadd

https://github.com/dalance/procs

 3 root │ 0.0 0.0 00:00:00 │ pool_workqueue_release

 4 root │ 0.0 0.0 00:00:00 │ kworker/R-rcu_g

 5 root │ 0.0 0.0 00:00:00 │ kworker/R-rcu_p

Tip

Exit with q (quit).

Running procs --tree is equivalent to running ps -ef --forest but it is also

interactive:

$> procs --tree

 PID User │ TTY CPU MEM CPU Time │ Command

 │ [%] [%] │

 ├┬───────── 1 root │ 0.0 1.6 00:00:04 │ systemd

 │├───────── 129 root │ 0.0 2.1 00:00:01 │ systemd-journal

 │├┬──────── 195 root │ 0.0 3.2 00:00:07 │ multipathd

 ││├──────── [201] root │ 0.0 3.2 00:00:00 │ multipathd

 ││├──────── [203] root │ 0.0 3.2 00:00:00 │ multipathd

How much disk space is left? (df or duf)

List storage devices, mounts and available space with df (disk free):

$> df -h

Filesystem Size Used Avail Use% Mounted on

/dev/root 29G 3.8G 25G 14% /

tmpfs 422M 0 422M 0% /dev/shm

tmpfs 169M 1.7M 167M 1% /run

tmpfs 5.0M 0 5.0M 0% /run/lock

efivarfs 128K 35K 89K 29% /sys/firmware/efi/efivars

/dev/sda16 881M 59M 761M 8% /boot

/dev/sda15 105M 6.1M 99M 6% /boot/efi

/dev/sdb1 3.9G 28K 3.7G 1% /mnt

tmpfs 85M 12K 85M 1% /run/user/1000

You can also install duf if you want a modern alternative to the df command:

$> duf

╭───

│ 4 local devices

├────────────┬────────┬───────┬────────┬───────────────────────────────┬──────┬───

│ MOUNTED ON │ SIZE │ USED │ AVAIL │ USE% │ TYPE │ FI

├────────────┼────────┼───────┼────────┼───────────────────────────────┼──────┼───

│ / │ 28.0G │ 3.8G │ 24.2G │ [##..................] 13.5% │ ext4 │ /d

│ /boot │ 880.4M │ 58.5M │ 760.2M │ [#...................] 6.6% │ ext4 │ /d

│ /boot/efi │ 104.3M │ 6.1M │ 98.2M │ [#...................] 5.8% │ vfat │ /d

│ /mnt │ 3.9G │ 28.0K │ 3.6G │ [....................] 0.0% │ ext4 │ /d

╰────────────┴────────┴───────┴────────┴───────────────────────────────┴──────┴───

╭───

│ 7 special devices

├───────────────────────────┬────────┬───────┬────────┬───────────────────────────

│ MOUNTED ON │ SIZE │ USED │ AVAIL │ USE%

├───────────────────────────┼────────┼───────┼────────┼───────────────────────────

│ /dev │ 418.7M │ 0B │ 418.7M │

│ /dev/shm │ 421.4M │ 0B │ 421.4M │

│ /run │ 168.6M │ 1.6M │ 166.9M │ [....................] 1

│ /run/lock │ 5.0M │ 0B │ 5.0M │

│ /run/snapd/ns │ 168.6M │ 1.6M │ 166.9M │ [....................] 1

│ /run/user/1000 │ 84.3M │ 12.0K │ 84.3M │ [....................] 0

│ /sys/firmware/efi/efivars │ 128.0K │ 34.4K │ 88.6K │ [#####...............] 26

╰───────────────────────────┴────────┴───────┴────────┴───────────────────────────

Administration

You must be an administrator (have sudo access) to perform the following operations.

https://github.com/muesli/duf

How do I change my username? (usermod)

The following command renames the oldname user account into newname and also

renames the user’s home directory at the same time:

$> sudo usermod --login newname --home /home/newname --move-home oldname

You also have to rename the associated group:

$> sudo groupmod --new-name newname oldname

How do I create another user? (useradd)

$> useradd --create-home --shell /bin/bash jane_doe

How do I find and kill a naughty process? (ps , kill)

You might need this if you lost your SSH connection after you launched a process which

listens on a port, e.g. 3000. If the process still runs, the port is no longer available. This

could happen, for example, in the “Deploy a PHP application with SFTP” exercise.

Find the process with ps and grep :

$> ps -ef | grep php

root 20942 1 0 Dec06 ? 00:00:24 php-fpm: master process (/etc/php/

www-data 20960 20942 0 Dec06 ? 00:00:00 php-fpm: pool www

www-data 20961 20942 0 Dec06 ? 00:00:00 php-fpm: pool www

jde 26378 26365 0 10:02 pts/0 00:00:00 php -S 0.0.0.0:3000

In this example based on the “Deploy a PHP application with SFTP”exercise, the process

that interests you is the fourth one, which was launched by the php -S 0.0.0.0:3000

https://archidep.ch/cheatsheets/410-deploy-a-php-app-with-sftp/
https://archidep.ch/cheatsheets/410-deploy-a-php-app-with-sftp/

command as shown in the last column, and has the Process ID 26378 . The other PHP

processes are unrelated to what you were doing, so you should not touch them.

Now that you have the ID of the naughty process, you can kill it:

$> kill 26378

If you check the list of processes again, it should no longer be there. If it does not want to

die, you can kill it more violently:

$> kill -KILL 26378

The changes to my systemd service are not taken into account!
(systemctl daemon-reload)

Every time you change a systemd unit file, you must tell systemd to reload its

configuration with the following command:

sudo systemctl daemon-reload

You should also restart your service. Assuming it is defined by the file

/etc/systemd/system/foo.service , you can do so with the following command:

sudo systemctl restart foo

My systemd service is not working! (systemctl status &
journalctl)

Assuming your service is defined by the file /etc/systemd/system/foo.service , you

should first check its status with the following command:

sudo systemctl status foo

This shows you whether your service is active (running) and whether it is enabled (to

restart at boot). When there is a problem, it may also show you the error that caused the

service to fail to start.

If you cannot find a clear problem from the status information, you should look at the

system logs for that service:

sudo journalctl -u foo

Not all services log there, however. If journalctl displays no log entries, you should

look in the standard Linux log directory /var/log for a file or a directory named after

your service. For example, nginx stores its error logs in /var/log/nginx/error.log

by default.

If your service cannot start, you should be able to find an error from one of these sources.

List a server’s SSH host key fingerprints

If you need to see the fingerprints of a server’s SSH public keys (e.g. to check the key in an

SSH client’s initial connection warning), run the following command on the server:

find /etc/ssh -name "*.pub" -exec ssh-keygen -l -f {} \;

Installing & upgrading

You must be an administrator (have sudo access) to perform some of the following

operations.

How do I know what is installed? (apt list)

List all installed packages:

$> apt list --installed

Listing...

accountsservice/bionic,now 0.6.45-1ubuntu1 amd64 [installed]

acl/bionic,now 2.2.52-3build1 amd64 [installed]

acpid/bionic,now 1:2.0.28-1ubuntu1 amd64 [installed]

...

Find something more specific by piping through grep :

$> apt list --installed | grep ssh

libssh-4/noble,now 0.10.6-2build2 amd64 [installed,automatic]

openssh-client/noble-updates,now 1:9.6p1-3ubuntu13.5 amd64 [installed,automatic]

openssh-server/noble-updates,now 1:9.6p1-3ubuntu13.5 amd64 [installed]

openssh-sftp-server/noble-updates,now 1:9.6p1-3ubuntu13.5 amd64 [installed]

ssh-import-id/noble,now 5.11-0ubuntu2 all [installed]

How do I find new stuff to install? (apt search , apt info , apt
show)

Search for packages by name:

$> apt search tldr

Sorting... Done

Full Text Search... Done

...

tealdeer/noble 1.6.1-4build2 amd64

 simplified, example based and community-driven man pages

Find out more about a package with apt info or apt show (equivalent):

$> apt info tealdeer

Package: tealdeer

Version: 1.6.1-4build2

...

Installed-Size: 3,124 kB

Depends: libc6 (>= 2.34), libgcc-s1 (>= 4.2), libssl3t64 (>= 3.0.0)

Homepage: https://github.com/dbrgn/tealdeer/

...

Description: simplified, example based and community-driven man pages

 tealdeer is a very fast CLI implementation of tldr, the collaborative

 cheatsheets of console commands.

 .

 The executable is named tldr.

How do I install stuff? (apt install)

Install a new package:

$> sudo apt install cowsay

Reading package lists... Done

Building dependency tree

Reading state information... Done

The following NEW packages will be installed:

 cowsay

0 upgraded, 1 newly installed, 0 to remove and 4 not upgraded.

Need to get 17.7 kB of archives.

After this operation, 89.1 kB of additional disk space will be used.

More information

More complex packages will list their dependencies and ask you to confirm that you

really want to install everything.

If the package provides a command, you can then use it to make sure your installation

worked. In this example, the (very useful) cowsay command was installed:

$> cowsay hello

< hello >

 \ ^__^

 \ (oo)_______

 (__)\)\/\

 ||----w |

 || ||

How do I keep my server up-to-date? (apt update , apt upgrade
& apt full-upgrade)

You might have noticed that the list and show commands are quite fast. That’s

because they don’t fetch any data from the network: the package lists and package

information are stored locally on the computer.

Of course, this local information becomes out of date as new package versions are

released to the official package repositories. You can update your local information with

apt update (which requires superuser privileges):

$> sudo apt update

Hit:1 http://azure.archive.ubuntu.com/ubuntu noble InRelease

Get:2 http://azure.archive.ubuntu.com/ubuntu noble-updates InRelease [126 kB]

Hit:3 http://azure.archive.ubuntu.com/ubuntu noble-backports InRelease

Get:4 http://azure.archive.ubuntu.com/ubuntu noble-security InRelease [126 kB]

Get:5 http://azure.archive.ubuntu.com/ubuntu noble-updates/main amd64 Packages [53

Get:6 http://azure.archive.ubuntu.com/ubuntu noble-updates/main Translation-en [13

Get:7 http://azure.archive.ubuntu.com/ubuntu noble-security/main amd64 Packages [3

Get:8 http://azure.archive.ubuntu.com/ubuntu noble-security/main Translation-en [8

Fetched 1,388 kB in 1s (1,855 kB/s)

Reading package lists... Done

Building dependency tree... Done

Reading state information... Done

2 packages can be upgraded. Run 'apt list --upgradable' to see them.

You now have up-to-date information about all available packages. You can list available

upgrades with the apt list command:

$> apt list --upgradable

Listing... Done

cloud-init/noble-updates 24.3.1-0ubuntu0~24.04.2 all [upgradable from: 24.2-0ubunt

mdadm/noble-updates 4.3-1ubuntu2.1 amd64 [upgradable from: 4.3-1ubuntu2]

When you have packages to upgrade, you could of course manually apt install each

of them, but there are also two helpful commands that can do it for you:

apt upgrade

This command will upgrade all packages that have ne versions, installing any new

dependencies that may be required.

However, it will behave conservatively and never remove packages that are currently

installed. This is to avoid problems in case new versions of your installed packages

have widely different dependencies.

apt full-upgrade

This command will do the same as apt upgrade , but in addition, it will

automatically remove any packages that were dependencies of previous versions of

your packages but are no longer needed by the new versions.

The second command is “more dangerous” as you have to make sure that none of the

removed packages will impact your computer. Use it with caution.

Daemons using outdated libraries

When you install or upgrade a package, it may prompt you to reboot and/or to restart

outdated daemons (i.e. background services):

Simply select “Ok” by pressing the Tab key, then press Enter to confirm.

A word of caution: do not install or upgrade packages without at least a basic

understanding of what they do and how they might be used by your operating

system and applications. Otherwise you risk breaking your system.

This happens either because you have installed a new background service, or

because your Linux distribution uses unattended upgrades: a tool that

automatically installs daily security upgrades on your server without human

intervention. Sometimes, some of the background services running on your

server need to be restarted for upgrades to be applied. Rebooting your server

would also have the effect of restarting these services and applying the security

upgrades.

https://archidep.ch/cheatsheets/sysadmin/linux-unattended-upgrades

System restart required

Some packages can be upgraded in place. Other packages may require the computer to

be restarted for the upgrade to take effect.

When that is the case, there will be a warning on the shell every time you connect:

$> ssh jde@archidep.ch

Welcome to Ubuntu

...

**** System restart required ***

This means that the upgrade process will only be complete once you restart the

computer with sudo reboot .

How do I get rid of stuff? (apt remove & apt autoremove)

Uninstall a package:

$> sudo apt remove cowsay

Reading package lists... Done

Building dependency tree... Done

Reading state information... Done

The following packages will be REMOVED:

 cowsay

0 upgraded, 0 newly installed, 1 to remove and 2 not upgraded.

After this operation, 93.2 kB disk space will be freed.

Do you want to continue? [Y/n] y

(Reading database ... 64682 files and directories currently installed.)

Removing cowsay (3.03+dfsg2-8) ...

Processing triggers for man-db (2.12.0-4build2) ...

Tip

This command will uninstall binaries but not configuration files. Use apt purge

<name>... to also remove the configuration files.

The apt autoremove command cleans up packages that were previously required but

are no longer useful. Most of the time, there will probably be nothing to remove:

$> sudo apt autoremove

Reading package lists... Done

Building dependency tree... Done

Reading state information... Done

0 upgraded, 0 newly installed, 0 to remove and 2 not upgraded.

Tip

It’s good practice to run apt autoremove after an upgrade and reboot, to make

sure there are no unused packages taking up space on the computer.

What about apt-get and apt-cache ?

The apt command is actually a higher-level frontend to the older and lower-level

apt-get and apt-cache commands. apt is simpler to use, but you will find many

examples of these older commands on the Internet.

These are mostly equivalent commands:

apt command older equivalent

apt list dpkg -l

apt search apt-cache search

apt install apt-get install

apt update apt-get update

apt command older equivalent

apt upgrade apt-get upgrade

apt full-upgrade apt-get dist-upgrade

My post-receive Git hook is not executing!

When you push to a remote (foo in this example), you may get this message:

$> git push foo main

Everything up-to-date

This means that you have no new commits to push. Therefore the post-receive hook

is not triggered since nothing new was received by the repository on the server.

You need to make and commit a change before you push, so that new commits will be

sent.

If you have no changes to make and just want to test your hook, you may also create an

empty commit with the following command:

git commit --allow-empty -m "Test hook"

This will give you a new commit to push without actually making a change.

Back to top

